
Call Control Interface (CCI)

Application Programming Interface
Version 0.9a Edition 3

Updated 2006-01-02
Distributed with Package strss7-0.9a.3

Copyright c© 2006 OpenSS7 Corporation
All Rights Reserved.

Abstract

This document specifies a Call Control Interface (CCI) Application Program-
ming Interface in support of the OpenSS7 Integrated Service Digital Network
(ISDN) and ISDN User Part (ISUP) protocol stacks.1 It provides abstraction
of the call control interface to these components as well as providing a basis for
call control for other call control signalling protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

1 As a future extension to the interface, H.225, BSSAP, and SIP will be supported.

mailto:bidulock@openss7.org
http://www.openss7.org/

Copyright c© 2001-2006 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock
All Rights Reserved.

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Unauthorized distribution or duplication is prohibited.

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights.. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance
or implementation of the contents thereof.

OpenSS7 Corporation reserves the right to revise this software and documentation for any
reason, including but not limited to, conformity with standards promulgated by various
agencies, utilization of advances in the state of the technical arts, or the reflection of changes
in the design of any techniques, or procedures embodied, described, or referred to herein.
OpenSS7 Corporation is under no obligation to provide any feature listed herein.

http://www.openss7.com/
mailto:bidulock@openss7.org
http://www.openss7.com/

i

Short Contents

Preface . 1

1 Introduction. 3

2 The Call Control Layer . 5

3 CCI Services Definition . 11

4 CCI Primitives . 51

5 Diagnostics Requirements . 195

Addendum for Q.931 Conformance . 197

Addendum for Q.764 Conformance . 223

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance 271

A Mapping of CCI Primitives to Q.931 275

B Mapping of CCI Primitives to Q.764 277

C State/Event Tables . 279

D Primitive Precedence Tables . 281

E CCI Header File Listing . 283

License . 301

Glossary . 309

Acronyms . 311

References . 313

Indices . 315

ii Call Control Interface (CCI)

iii

Table of Contents

Preface . 1
Security Warning . 1
Abstract. 1
Purpose . 1
Intent . 2
Audience . 2
Disclaimer . 2
Revision History . 2

1 Introduction . 3
1.1 Related Documentation . 3

1.1.1 Role . 3
1.2 Definitions, Acronyms, Abbreviations . 3

2 The Call Control Layer. 5
2.1 Model of the CCI . 5
2.2 CCI Services . 5

2.2.1 UNI . 6
2.2.1.1 Address Formats . 6

2.2.2 NNI . 8
2.2.2.1 Address Formats . 8

2.2.3 Local Management . 10

3 CCI Services Definition 11
3.1 Local Management Services Definition . 12

3.1.1 Call Control Information Reporting Service 12
3.1.2 CCS Address Service . 12
3.1.3 CCS User Bind Service . 13
3.1.4 CCS User Unbind Service . 13
3.1.5 Receipt Acknowledgement Service . 14
3.1.6 Options Management Service . 14
3.1.7 Error Acknowledgement Service . 15

3.2 User-Network Interface Services Definition 16
3.2.1 Call Setup Phase . 17

3.2.1.1 User Primitives for Successful Call Setup 18
3.2.1.2 Provider Primitives for Successful Call Setup 18

3.2.2 Call Establishment Phase . 20
3.2.2.1 User Primitives for Successful Call Establishment 20
3.2.2.2 Provider Primitives for Successful Call Establishment

. 21
3.2.2.3 Provider Primitives for Successful Call Setup 21

3.2.3 Call Established Phase . 22

iv Call Control Interface (CCI)

3.2.3.1 Suspend Service . 22
3.2.3.2 Resume Service . 24

3.2.4 Call Termination Phase . 26
3.2.4.1 Call Reject Service . 26
3.2.4.2 Call Failure Service . 26
3.2.4.3 Call Release Service . 27

3.2.5 Call Management . 29
3.2.5.1 User Primitives for Call Management 29
3.2.5.2 Provider Primitives for Call Management 29

3.3 Network-Network Interface Services Definition 30
3.3.1 Call Setup Phase . 30

3.3.1.1 User Primitives for Successful Call Setup 31
3.3.1.2 Provider Primitives for Successful Call Setup 31

3.3.2 Continuity Test Phase. 33
3.3.2.1 Continuity Test Successful . 33
3.3.2.2 Continuity Test Unsuccessful . 36

3.3.3 Call Establishment Phase . 38
3.3.3.1 User Primitives for Successful Call Establishment 38
3.3.3.2 Provider Primitives for Successful Call Establishment

. 39
3.3.4 Call Established Phase . 40

3.3.4.1 User Primitives for Established Calls 40
3.3.4.2 Provider Primitives for Established Calls 40

3.3.5 Call Termination Phase . 40
3.3.5.1 Call Reject Service . 40
3.3.5.2 Call Failure Service . 41
3.3.5.3 Call Release Service . 42

3.3.6 Circuit Management Services . 44
3.3.6.1 Reset Service . 44
3.3.6.2 Blocking Service . 47
3.3.6.3 Unblocking Service . 48
3.3.6.4 Query Service . 49

4 CCI Primitives . 51
4.1 Management Primitives . 52

4.1.1 Call Control Information Request . 52
4.1.2 Call Control Information Acknowledgement 53
4.1.3 Protocol Address Request . 54
4.1.4 Protocol Address Acknowledgement . 55
4.1.5 Bind Protocol Address Request . 56
4.1.6 Bind Protocol Address Acknowledgement 59
4.1.7 Unbind Protocol Address Request . 61
4.1.8 Call Processing Options Management Request 62
4.1.9 Call Processing Options Management Acknowledgement . . 64
4.1.10 Error Acknowledgement . 65
4.1.11 Successful Receipt Acknowledgements 67

4.2 Primitive Format and Rules . 68
4.2.1 Call Setup Phase . 68

v

4.2.1.1 Call Control Setup Request . 68
4.2.1.2 Call Control Setup Indication . 73
4.2.1.3 Call Control Setup Response . 76
4.2.1.4 Call Control Setup Confirm . 78
4.2.1.5 Call Control Reattempt Indication 80

4.2.2 Continuity Check Phase . 82
4.2.2.1 Call Control Continuity Check Request 82
4.2.2.2 Call Control Continuity Check Indication 84
4.2.2.3 Call Control Continuity Test Request 86
4.2.2.4 Call Control Continuity Test Indication 88
4.2.2.5 Call Control Continuity Report Request 89
4.2.2.6 Call Control Continuity Report Indication 91

4.2.3 Collecting Information Phase . 92
4.2.3.1 Call Control More Information Request 92
4.2.3.2 Call Control More Information Indication 94
4.2.3.3 Call Control Information Request 95
4.2.3.4 Call Control Information Indication. 97
4.2.3.5 Call Control Information Timeout Indication 99

4.2.4 Call Establishment Phase . 100
4.2.4.1 Call Control Proceeding Request 100
4.2.4.2 Call Control Proceeding Indication 102
4.2.4.3 Call Control Alerting Request . 103
4.2.4.4 Call Control Alerting Indication 105
4.2.4.5 Call Control Progress Request. 106
4.2.4.6 Call Control Progress Indication 108
4.2.4.7 Call Control In-Band Information Request 109
4.2.4.8 Call Control In-Band Information Indication 111
4.2.4.9 Call Control Connect Request . 112
4.2.4.10 Call Control Connect Indication 114
4.2.4.11 Call Control Setup Complete Request 115
4.2.4.12 Call Control Setup Complete Indication. 117

4.2.5 Call Established Phase . 118
4.2.5.1 Forward Transfer Request. 118
4.2.5.2 Forward Transfer Indication . 120
4.2.5.3 Call Control Suspend Request . 121
4.2.5.4 Call Control Suspend Indication 123
4.2.5.5 Call Control Suspend Response 124
4.2.5.6 Call Control Suspend Confirmation 126
4.2.5.7 Call Control Suspend Reject Request 127
4.2.5.8 Call Control Suspend Reject Confirmation 129
4.2.5.9 Call Control Resume Request . 130
4.2.5.10 Call Control Resume Indication 132
4.2.5.11 Call Control Resume Response 133
4.2.5.12 Call Control Resume Confirmation 135
4.2.5.13 Call Control Resume Reject Request. 136
4.2.5.14 Call Control Resume Reject Indication 138

4.2.6 Call Termination Phase . 139
4.2.6.1 Call Control Reject Request . 139

vi Call Control Interface (CCI)

4.2.6.2 Call Control Reject Indication. 141
4.2.6.3 Call Control Call Failure Indication 142
4.2.6.4 Call Control Disconnect Request 144
4.2.6.5 Call Control Disconnect Indication 146
4.2.6.6 Call Control Release Request . 147
4.2.6.7 Call Control Release Indication. 149
4.2.6.8 Call Control Release Response . 151
4.2.6.9 Call Control Release Confirmation 153

4.3 Management Primitive Formats and Rules 154
4.3.1 Interface Management Primitives . 154

4.3.1.1 Interface Management Restart Request 154
4.3.1.2 Interface Management Restart Confirmation 155

4.3.2 Circuit Management Primitives . 156
4.3.2.1 Circuit Management Reset Request 156
4.3.2.2 Circuit Management Reset Indication 158
4.3.2.3 Circuit Management Reset Response 159
4.3.2.4 Circuit Management Reset Confirmation 161
4.3.2.5 Circuit Management Blocking Request 162
4.3.2.6 Circuit Management Blocking Indication 165
4.3.2.7 Circuit Management Blocking Response 166
4.3.2.8 Circuit Management Blocking Confirmation 168
4.3.2.9 Circuit Management Unblocking Request 169
4.3.2.10 Circuit Management Unblocking Indication 172
4.3.2.11 Circuit Management Unblocking Response 173
4.3.2.12 Circuit Management Unblocking Confirmation 175
4.3.2.13 Circuit Management Query Request 176
4.3.2.14 Circuit Management Query Indication 179
4.3.2.15 Circuit Management Query Response 180
4.3.2.16 Circuit Management Query Confirmation 182

4.3.3 Maintenance Primitives . 183
4.3.3.1 Maintenance Indication . 183

4.3.4 Circuit Continuity Test Primitives . 184
4.3.4.1 Circuit Continuity Check Request 184
4.3.4.2 Circuit Continuity Check Indication 186
4.3.4.3 Circuit Continuity Test Request 188
4.3.4.4 Circuit Continuity Test Indication 190
4.3.4.5 Circuit Continuity Report Request 191
4.3.4.6 Circuit Continuity Report Indication 193

4.3.5 Collecting Information Phase . 194

5 Diagnostics Requirements 195
5.1 Non-Fatal Error Handling Facility . 195
5.2 Fatal Error Handling Facility . 195

vii

Addendum for Q.931 Conformance. 197
Primitives and Rules for Q.931 Conformance . 197

Common Primitive Parameters . 197
Call Control Addresses . 197
Optional Information Elements . 199

Local Management Primitives . 200
CC INFO ACK . 200
CC BIND REQ . 200
CC BIND ACK . 201
CC OPTMGMT REQ . 201

Call Setup Primitives . 202
Call Type and Flags . 202
CC SETUP REQ . 206
CC SETUP IND . 208
CC SETUP RES . 209
CC SETUP CON . 209
CC CALL REATTEMPT IND . 210
CC SETUP COMPLETE REQ . 210
CC SETUP COMPLETE IND . 210

Continuity Check Primitives . 210
CC CONT CHECK REQ . 210
CC CONT TEST REQ . 210
CC CONT REPORT REQ . 210

Call Establishment Primitives . 210
CC MORE INFO REQ . 211
CC MORE INFO IND . 211
CC INFORMATION REQ . 211
CC INFORMATION IND . 211
CC INFO TIMEOUT IND . 211
CC PROCEEDING REQ. 211
CC PROCEEDING IND . 212
CC ALERTING REQ . 212
CC ALERTING IND . 212
CC PROGRESS REQ . 212
CC PROGRESS IND . 212
CC IBI REQ . 212
CC IBI IND . 213

Call Established Primitives . 213
CC SUSPEND REQ . 213
CC SUSPEND IND . 213
CC SUSPEND RES . 213
CC SUSPEND CON . 214
CC SUSPEND REJECT REQ . 214
CC SUSPEND REJECT IND . 214
CC RESUME REQ . 214
CC RESUME IND . 214
CC RESUME RES . 215
CC RESUME CON . 215

viii Call Control Interface (CCI)

CC RESUME REJECT REQ . 215
CC RESUME REJECT IND . 215

Call Termination Primitives . 215
Cause Values . 216
CC REJECT REQ . 219
CC REJECT IND . 219
CC CALL FAILURE IND . 220
CC DISCONNECT REQ . 220
CC DISCONNECT IND . 220
CC RELEASE REQ . 221
CC RELEASE IND . 221
CC RELEASE RES . 221
CC RELEASE CON . 221

Management Primitives . 221
CC RESTART REQ . 221
CC RESTART CON . 222

Q.931 Header File Listing . 222

Addendum for Q.764 Conformance. 223
Primitives and Rules for Q.764 Conformance . 223

Common Primitive Parameters . 223
Call Control Addresses . 223
Optional Parameters . 225

Local Management Primitives . 226
CC INFO ACK . 226
CC BIND REQ . 226
CC BIND ACK . 228
CC OPTMGMT REQ . 229

Call Setup Primitives . 229
CC SETUP REQ . 229
CC SETUP IND . 232
CC SETUP RES . 233
CC SETUP CON . 234
CC CALL REATTEMPT IND . 235
CC SETUP COMPLETE REQ . 236
CC SETUP COMPLETE IND . 236

Continuity Check Phase . 236
CC CONT CHECK REQ . 236
CC CONT CHECK IND . 237
CC CONT TEST REQ . 237
CC CONT TEST IND . 238
CC CONT REPORT REQ . 238
CC CONT REPORT IND . 239

Call Establishment Primitives . 239
CC MORE INFO REQ . 240
CC MORE INFO IND . 240
CC INFORMATION REQ . 240
CC INFORMATION IND . 240

ix

CC INFO TIMEOUT IND . 241
CC PROCEEDING REQ. 241
CC PROCEEDING IND . 243
CC ALERTING REQ . 243
CC ALERTING IND . 243
CC PROGRESS REQ . 243
CC PROGRESS IND . 245
CC IBI REQ . 245
CC IBI IND . 245

Call Established Primitives . 245
CC SUSPEND REQ . 245
CC SUSPEND IND . 246
CC SUSPEND RES . 246
CC SUSPEND REJECT REQ . 247
CC RESUME REQ . 247
CC RESUME IND . 247
CC RESUME RES . 247
CC RESUME REJECT REQ . 248

Call Termination Primitives . 248
CC REJECT REQ . 248
CC CALL FAILURE IND . 248
CC DISCONNECT REQ . 249
CC RELEASE REQ . 249
CC RELEASE IND . 252

Management Primitives . 253
CC RESTART REQ . 253
CC RESET REQ . 253
CC RESET IND . 253
CC RESET RES . 254
CC RESET CON . 254
CC BLOCKING REQ . 254
CC BLOCKING IND . 255
CC BLOCKING RES . 255
CC BLOCKING CON . 256
CC UNBLOCKING REQ . 256
CC UNBLOCKING IND . 257
CC UNBLOCKING RES . 257
CC UNBLOCKING CON . 258
CC QUERY REQ . 259
CC QUERY IND . 259
CC QUERY RES . 259
CC QUERY CON . 260

Q.764 Header File Listing . 260

x Call Control Interface (CCI)

Addendum for ETSI EN 300 356-1 V3.2.2
Conformance . 271

Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance . . 271
Local Management Primitives . 271
Call Setup Primitives . 271

CC SETUP REQ . 271
CC SETUP IND . 271

ETSI EN 300 356-1 V3.2.2 Header File Listing 274

Appendix A Mapping of CCI Primitives to
Q.931 . 275

Appendix B Mapping of CCI Primitives to
Q.764 . 277

Appendix C State/Event Tables 279

Appendix D Primitive Precedence Tables . . . 281

Appendix E CCI Header File Listing 283

License . 301
GNU Free Documentation License . 301

Preamble . 301
Terms and Conditions for Copying, Distribution and Modification

. 301
How to use this License for your documents 307

Glossary . 309

Acronyms . 311

References. 313

Indices . 315
Concept Index . 316
Type Index . 317
Variable Index . 319
Primitive Index . 322
Protocol State Index . 324

Call Control Interface (CCI) Preface

Preface

Security Warning

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.
OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance or
implementation of the contents thereof.
OpenSS7 Corporation is making this documentation available as a reference point for the
industry. While OpenSS7 Corporation believes that these interfaces are well defined in this
release of the document, minor changes may be made prior to products conforming to the
interfaces being made available.

Abstract

This document is a Application Programming Interface containing technical details con-
cerning the implementation of the Call Control Interface (CCI) for OpenSS7. It contains
recommendations on software architecture as well as platform and system applicability of
the Call Control Interface (CCI).
This document specifies a Call Control Interface (CCI) Specification in support of the
OpenSS7 Integrated Service Digital Network (ISDN) and ISDN User Part (ISUP) protocol
stacks.1 It provides abstraction of the call control interface to these components as well as
providing a basis for call control for other call control signalling protocols.

Purpose

The purpose of this document is to provide technical documentation of the Call Control
Interface (CCI). This document is intended to be included with the OpenSS7 STREAMS
software package released by OpenSS7 Corporation. It is intended to assist software de-
velopers, maintainers and users of the Call Control Interface (CCI) with understanding
the software architecture and technical interfaces that are made available in the software
package.

1 As a future extension to the interface, H.225, BSSAP, and SIP will be supported.

2006-01-02 1

http://www.openss7.com/
http://www.openss7.com/

Preface

Intent

It is the intent of this document that it act as the primary source of information concerning
the Call Control Interface (CCI). This document is intended to provide information for
writers of OpenSS7 Call Control Interface (CCI) applications as well as writers of OpenSS7
Call Control Interface (CCI) Users.

Audience

The audience for this document is software developers, maintainers and users and integrators
of the Call Control Interface (CCI). The target audience is developers and users of the
OpenSS7 SS7 and ISDN stack.

Disclaimer

Although the author has attempted to ensure that the information in this document is com-
plete and correct, neither the Author nor OpenSS7 Corporation will take any responsibility
in it.

Revision History

Take care that you are working with a current version of this documentation: you will not
be notified of updates. To ensure that you are working with a current version, check the
OpenSS7 Project website for a current version.
A printed (or postscript) version of this document is an UNCONTROLLED version.

$Log: cci.texi,v $

Revision 0.9.2.1 2006/01/02 11:51:36 brian

- new CCI texinfo file

Revision 0.8.2.3 2003/07/12 19:12:29 brian

Update draft revision 4.

Revision 0.8.2.2 2003/03/23 19:56:50 brian

Finalizing isdn.

Revision 0.8.2.1 2003/02/21 12:00:35 brian

Updated primitive interface and Q.764 conformance.

Revision 0.8 2002/11/17 15:06:36 brian

Added initial documentation for call control interface.

2 Version 0.9a Ed. 3

http://www.openss7.org/

Call Control Interface (CCI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Call
Control Interface definition. The Call Control Interface (CCI) enables the user of a call
control service to access and use any of a variety of conforming call control service providers
without specific knowledge of the provider’s protocol. The service interface is designed to
support any network call control protocol and user call control protocol. This interface only
specifies access to call control service providers, and does not address issues concerning call
control and circuit management, protocol performance, and performance analysis tools.
This specification assumes that the reader is familiar with ITU-T state machines and call
control interfaces (e.g., Q.764, Q.931), and STREAMS.

1.1 Related Documentation

— 1993 ITU-T Q.764 Recommendation

— 1993 ITU-T Q.931 Recommendation

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the services provided by the Integrated
Services Digital Network (ISDN) and ISDN User Part (ISUP) for ITU-T applications as
described in ITU-T Recommendation Q.931 and ITU-T Recommendation Q.764.1 These
specifications are targeted for use by developers and testers of protocol modules that require
call control service.

1.2 Definitions, Acronyms, Abbreviations

Application Context
Object Identifier
Calling Party

The Calling Party.

Called Party
The Called Party.

Operations Class
One of 5 ISO/OSI Transport Protocol Classes.

MAP Mobile Applications Part

TCAP Transaction Capabilities Application Part

SCCP Service Connection Control Part

MTP Message Transfer Part

TR Transaction Sub-Layer

1 In a later version of this document H.225, BSSAP, and SIP will also be supported.

2006-01-02 3

Chapter 1: Introduction

TC Component Sub-Layer

IMSI International Mobile Station Identifier

MSISDN Mobile Station ISDN Directory Number (E.164)

ITU International Telecommunications Union

ITU-T International Telecommunications Union – Telecom Sector

OSI Open Systems Interconnect

ISO International Organization for Standardization

MAP User
A user of the Mobile Application Part (MAP) Interface.

MAP Provider
A provider of the Mobile Application Part (MAP) Interface.

MAPI The Mobile Application Part (MAP) Interface.

MS Mobile Station.

Components
Transaction components as defined in ITU-T Recommendation Q.771.

QoS Quality of Service

STREAMS
A communication services development facility first available with UNIX Sys-
tem V Release 3.

4 Version 0.9a Ed. 3

Call Control Interface (CCI) The Call Control Layer

2 The Call Control Layer

The Call Control Layer provides the means to manage the connection and disconnection of
calls. It is responsible for the routing and management of call control signalling between
call control-user entities.

2.1 Model of the CCI

The CCI defines the services provided by the call control layer to the call control-user at the
boundary between the call control provider and the call control user entity. The interface
consists of a set of primitives defined as STREAMS messages that provide access to the
call control layer services, and are transferred between the CCS user entity and the CCS
provider. These primitives are of two types; ones that originate from the CCS user, and
others that originate from the CCS provider. The primitives that originate from the CCS
user make requests to the CCS provider, or respond to an indication of an event of the CCS
provider. The primitives that originate from the CCS provider are either confirmations of
a request or are indications to the CCS user that an event has occurred. Figure 2.1 shows
the model of the CCI.� �

Call Control User

Call Control Provider

Request/Response
Primitives

Indication/Confirmation
Primitives

Figure 2.1: Model of the CCI
 	
The CCI allows the CCS provider to be configured with any call control layer user (such as
an ISDN user call control application) that also conforms to the CCI. A call control layer
user can also be a user program that conforms to the CCI and accesses the CCS provider
via putmsg(2s) and getmsg(2s) system calls.

2.2 CCI Services

The features of the CCI are defined in terms of the services provided by the CCS provider,
and the individual primitives that may flow between the CCS user and the CCS provider.

The services supported by the CCI are based on three distinct modes of communication,
user-network interface (UNI) User mode, user-network interface (UNI) Network mode, and

2006-01-02 5

Chapter 2: The Call Control Layer

network-network interface (NNI). In addition, the CCI supports services for local manage-
ment.

2.2.1 UNI

The main features of the User-Network Interface mode of communication are:
1. It is call oriented.
2. It employs facility associated signalling in that the signalling interface and circuits that

are controlled by that signalling interface are bound by physical configuration. (For
example, 23B+D, 2B+D).

3. The protocol has two aspects to the interface: one side of the interface follows the User
protocol whereas the other side of the interface follows the Network protocol.

4. The user side of the protocol has no formal maintenance or monitoring procedures and
therefore reports most if not all system events to the user.

5. The network side of the protocol has formal maintenance and monitoring procedures
and therefore reports most if not all system events to maintenance.

2.2.1.1 Address Formats

Addresses specifying all the calls and channels known to the provider are specified with
scope ISDN_SCOPE_DF and identifier zero (0).

Customer/Provider Group

A customer/provider group has a different interpretation on the User and Network side of
the call control interface. In User mode, the provider group is a group of all equipment
groups that are serviced by the same network provider. In Network mode, the customer
group is a group of all equipment groups to which the same service is provided to the same
customer by the network.
Customer/provider groups are identifier using a unique customer/provider group identi-
fier within the CCS provider. Addresses specifying all of the equipment groups in a cus-
tomer/provider group and specified with scope ISDN_SCOPE_XG and the customer/provider
group identifier.

Equipment Group

An equipment group is a group of all transmission groups (B- and D-channels) terminating
at the same location. For User mode this corresponds to all the B- and D-channels termi-
nating on the same network provider exchange. For Network mode this corresponds to all
the B- and D-channels terminating on the same customer site.
Equipment groups are identified using a unique equipment group identifier within the CCS
provider. Addresses specifying all of the B- and D-channels making up an equipment group
are specified with scope ISDN_SCOPE_EG and the equipment group identifier.

Facility Group

A facility group is a group of D-channels (data links) controlling a set of B-channels. This
corresponds to the signalling interface. For regular interfaces, a signalling relation consists

6 Version 0.9a Ed. 3

Call Control Interface (CCI) The Call Control Layer

of a single signalling interface. Where multiple signalling interfaces are used to control the
same range of channels (e.g. primary and backup interfaces), all signalling interfaces belong
to the same facility group.

The B-channels that make up a facility group are channels that share the same dial plan and
routing characteristics for telephone calls. A facility group is associated with an equipment
group.

Facility groups are identified using a unique facility group identifier within the CCS provider.
Addresses specifying all of the channels in a facility group are specified with scope ISDN_
SCOPE_FG and the facility group identifier.

An ISDN Channel Identifier is only unique within a facility group.

Transmission Group

A transmission group is the group of all D- and B-Channels associated with a given Q.931
signalling interface. For example, a typical PRI interface would consist of 23B+D, where
there is one signalling interface (the D-Channel) with 23 B-Channels associated with the D-
Channel. The 1 D-Channel and 23 B-Channels form a single transmission group associated
with the physical interface. Every D- or B-Channel belongs to one transmission group and
occupies a single time slot within that transmission group.

Transmission groups are identified using a unique transmission group identifier within the
CCS provider. Addresses specifying all of the channels in a transmission group are specified
with scope ISDN_SCOPE_TG and the transmission group identifier. Transmission groups
can also be specified using scope ISDN_SCOPE_FG and the Channel Identifier of one of the
channels in the facility group.

Channel

A channel refers to a specific B-Channel within a transmission and facility group.

Channels are identified using a unique channel identifier within the CCS provider. Addresses
specifying a specific channel are specified with scope ISDN_SCOPE_CH and the channel identi-
fier. Channels can also be specified using scope ISDN_SCOPE_FG, the facility group identifier,
and the Channel Identity of the channel within the facility group.

Data Link

A data link corresponds to a specific D-channel used for the control of channels. Data links
can be grouped into facility groups.

Data links are identified using a unique data link identifier within the CCS provider. Ad-
dresses specifying all of the channels controlled by a data link are specified with scope
ISDN_SCOPE_DL and the data link identifier.

2006-01-02 7

Chapter 2: The Call Control Layer� �

Facility
Group

Transmission
Group

Transmission
Group

Transmission
Group

Transmission
Group

Facility
Group

Equipment
Group

Equipment
Group

Customer/
Provider
Group

Data Links Data LinksChannels Channels Channels Channels

Figure 2.2: UNI Data Model
 	
2.2.2 NNI

The main features of the Network-Network Interface mode of communication are:
1. It is circuit oriented.
2. It employs quasi-associated signalling in that the path taken by signalling and the path

taken by the circuits are not necessarily related.
3. The protocol has one aspect and is peer-to-peer: that is, both sides of a signalling

interface follow the same protocol in the same way.
4. The network side of the protocol has formal maintenance and monitoring procedures

and therefore reports most if not all system events to maintenance.

2.2.2.1 Address Formats

Addresses specifying all of the circuits known to the provider are specified with scope ISUP_
SCOPE_DF and identifier zero (0).

Signalling Points

A signalling point is the SS7 signalling point (central office) that the provider represents.
A CCS provider can represent more than one signalling point.
A signalling point is identifier using a unique signalling point identifier within the CCS
provider. Addresses specifying all of the circuits in signalling point are specified with scope
ISUP_SCOPE_SP and the signalling point identifier.

Signalling Relations

A signalling relation is a relationship between a local signalling point and a remote signalling
point. A signalling relation consists of a single signalling interface.

8 Version 0.9a Ed. 3

Call Control Interface (CCI) The Call Control Layer

Signalling relations are identified using a unique signalling relation identifier within the CCS
provider. Addresses specifying all of the circuits in a signalling relation are specified with
scope ISUP_SCOPE_SR and the signalling relation identifier.

An ISUP Circuit Identification Code is only unique within a signalling relation.

Trunk Groups

A trunk group is a group of circuits that share the same routing characteristics for telephone
calls. A trunk group is associated with a signalling relation. For the NNI, a signalling
relation is the combination of local MTP Point Code and remote MTP Point Code.

A trunk group is identified using a unique trunk group identifier within the CCS provider.
Addresses specifying all of the circuits in a trunk group are specified with scope ISUP_
SCOPE_TG and the trunk group identifier.

Circuit Groups

A circuit group is a group of circuits that share the same common transmission facility (e.g,
E1 span) and is therefore impacted by any failure of the transmission facility. All of the
individual channels of an E1 span that are used to carry calls are members of the circuit
group.

Circuits groups are identified using a unique circuit group identifier within the CCS provider.
Addresses specifying all of the circuits within a circuit group are specified with scope ISUP_
SCOPE_CG and the circuit group identifier. Circuit groups can also be specified using scope
ISUP_SCOPE_SR and the Circuit Identification Code of one of the circuits within the circuit
group.

Circuits

A circuit refers to a specific time slot within a digital facility.

Circuits are identified using a unique circuit identifier within the CCS provider. Addresses
specifying a specific circuit are specified with scope ISUP_SCOPE_CT and the circuit identifier.
Circuits can also be specified using scope ISUP_SCOPE_CG, the circuit group identifier, and
the Circuit Identification Code of the circuit within the group. Circuits can also be specified
using scope ISUP_SCOPE_SR, the signalling relation identifier, and the Circuit Identification
Code of the circuit within the signalling relation.

2006-01-02 9

Chapter 2: The Call Control Layer� �
Signalling

Point

Message
Transfer

Part

Cicuit
Group

Trunk
Group

Trunk
Group

Trunk
Group

Trunk
Group

Circuit
Group

Signalling
Relation

Signalling
Relation

Message
Transfer

Part

Circuits Circuits

Figure 2.3: NNI Data Model
 	
2.2.3 Local Management

The CCI specifications also define a set of local management functions that apply to UNI
and NNI modes of communication. These services have local significance only. Tables 1, 2
and 3 summarizes the CCI service primitives by their state and service.

10 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

3 CCI Services Definition

This section describes the services of the CCI primitives. Time-sequence diagrams that
illustrate the sequence of primitives are included. (Conventions for the time-sequence dia-
grams are defined in ITU-T X.210.) The format of the primitives will be defined later in
this document.

Local Management Both CC_INFO_REQ, CC_INFO_ACK, CC_BIND_REQ, CC_BIND_ACK,
CC_UNBIND_REQ, CC_ADDR_REQ, CC_ADDR_ACK, CC_OPT-
MGMT_REQ, CC_OPTMGMT_ACK, CC_OK_ACK, CC_ERROR_ACK

Call Setup Both CC_SETUP_REQ, CC_SETUP_IND, CC_CALL_REATTEMPT_IND,
CC_MORE_INFO_REQ, CC_MORE_INFO_IND, CC_INFORMA-
TION_REQ, CC_INFORMATION_IND, CC_SETUP_RES,
CC_SETUP_CON

UNI CC_INFO_TIMEOUT_IND

NNI CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND

Call Establishment Both CC_PROCEEDING_REQ, CC_PROCEEDING_IND, CC_ALERT-
ING_REQ, CC_ALERTING_IND, CC_PROGRESS_REQ,
CC_PROGRESS_IND, CC_CONNECT_REQ, CC_CONNECT_IND

Call Established Both CC_SUSPEND_REQ, CC_SUSPEND_RES, CC_SUSPEND_IND,
CC_SUSPEND_CON, CC_RESUME_REQ, CC_RESUME_RES,
CC_RESUME_IND, CC_RESUME_CON

UNI CC_SUSPEND_REJECT_REQ, CC_SUSPEND_REJECT_IND,
CC_RESUME_REJECT_REQ, CC_RESUME_REJECT_IND

Call Termination Both CC_CALL_FAILURE_IND, CC_IBI_REQ, CC_IBI_IND,
CC_RELEASE_REQ, CC_RELEASE_IND, CC_RELEASE_RES,
CC_RELEASE_CON

UNI CC_DISCONNECT_REQ, CC_DISCONNECT_IND

Provider Management UNI CC_RESTART_REQ, CC_RESTART_CON

NNI CC_RESET_REQ, CC_RESET_IND, CC_RESET_RES,
CC_RESET_CON, CC_BLOCKING_REQ, CC_BLOCKING_IND,
CC_BLOCKING_RES, CC_BLOCKING_CON, CC_UNBLOCK-
ING_REQ, CC_UNBLOCKING_IND, CC_UNBLOCKING_RES,
CC_UNBLOCKING_CON, CC_QUERY_REQ, CC_QUERY_IND,
CC_QUERY_RES, CC_QUERY_CON

CC_CONT_CHECK_REQ, CC_CONT_CHECK_IND,
CC_CONT_TEST_REQ, CC_CONT_TEST_IND,
CC_CONT_REPORT_REQ, CC_CONT_REPORT_IND

Table 3.1: CCI Service Primitives

2006-01-02 11

Chapter 3: CCI Services Definition

3.1 Local Management Services Definition

The services defined in this section are outside the scope of international standards. These
services apply to UNI (User and Network), and NNI modes of communication. They are
invoked for the initialization/de-initialization of a stream connected to the CCS provider.
They are also used to manage options supported by the CCS provider and to report infor-
mation on the supported parameter values.

3.1.1 Call Control Information Reporting Service

This service provides information on the options supported by the CCS provider.

• CC INFO REQ: This primitive request that the CCS provider return the values of all
the supported protocol parameters. This request may be invoked during any phase.

• CC INFO ACK : This primitive is in response to the N INFO REQ primitive and
returns the values of the supported protocol parameters to the CCS user.

The sequence of primitive for call control information management is shown in Figure 3.1 .� �
CC_INFO_REQ

CC_INFO_ACK

Figure 3.1: Sequence of Primitives: Call Control Information Reporting Service
 	
3.1.2 CCS Address Service

This service allows a CCS user to determine the bound call control address and the con-
nected call control address for a given call reference associated with a stream. It permits
the CCS user to not necessarily retain this information locally, and allows the CCS user to
determine this information from the CCS provider at any time.

• CC ADDR REQ: This primitive requests that the CCS provider return information
concerning which call control address the CCS user is bound as well as the call control
address upon which the CCS user is currently engaged in a call for the specified call
reference.

• CC ADDR ACK : This primitive is in response to the CC ADDR REQ primitive and
indicates to the CCS user the requested information.

The sequence of primitives is shown in Figure 3.2 .

12 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �
CC_ADDR_REQ

CC_ADDR_ACK

Figure 3.2: Sequence of Primitives: Call Control User Address Service
 	
3.1.3 CCS User Bind Service

This service allows a call control address to be associated with a stream. It allows the
CCS user to negotiate the number of setup indications that can remain unacknowledged
for that CCS user (a setup indication is considered unacknowledged while it is awaiting
a corresponding setup response or release request from the CCS user). This service also
defines a mechanism that allows a stream (bound to a call control address of the CCS user)
to be reserved to handle incoming calls only. This stream is referred to as the listener
stream.
• CC BIND REQ: This primitive request that the CCS user be bound to a particular call

control address and negotiate the number of allowable outstanding setup indications
for that address.

• CC BIND ACK : This primitive is in response to the CC BIND REQ primitive and
indicates to the user that the specified CCS user has been bound to a call control
address.

The sequence of primitives is shown in Figure 3.3 .� �
CC_BIND_REQ

CC_BIND_ACK

Figure 3.3: Sequence of Primitives: Call Control User Bind Service
 	
3.1.4 CCS User Unbind Service

This service allows the CCS user to be unbound from a call control address.

2006-01-02 13

Chapter 3: CCI Services Definition

• CC UNBIND REQ: This primitive request that the CCS user be unbound from the
call control address that it had previously been bound to.

The sequence of primitives is shown in Figure 3.4 .� �
CC_UNBIND_REQ

CC_OK_ACK

Figure 3.4: Sequence of Primitives: Call Control User Unbind Service
 	
3.1.5 Receipt Acknowledgement Service

• CC OK ACK : This primitive indicates to the CCS user that the previous (indicated)
CCS user originated primitive was received successfully by the CCS provider.

An example showing the sequence of primitives for successful receipt acknowledgement is
depicted in Figure 3.5 .� �

*

CC_OK_ACK

*
CC_SETUP_REQ
CC_SETUP_RES
CC_ALERTING_REQ
CC_PROCEEDING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_SETUP_COMPLETE_REQ
CC_RELEASE_REQ
CC_RELEASE_IND
CC_SUSPEND_REQ
CC_RESUME_REQ

Figure 3.5: Sequence of Primitives: Call Control Receipt Acknowledgement Service
 	
3.1.6 Options Management Service

This service allows the CCS user to manage options parameter values associated with the
CCS provider.

• CC OPTMGMT REQ: This primitive allows the CCS user to select default values for
options parameters within the range supported by the CCS provider.

Figure 3.6 shows the sequence of primitives for call control options management.

14 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �
CC_OPTMGMT_REQ

CC_OK_ACK

Figure 3.6: Sequence of Primitives: Call Control Options Management Service
 	
3.1.7 Error Acknowledgement Service

• CC ERROR ACK : This primitive indicates to the CCS user that a non-fatal error
has occurred in the last CCS user originated request or response primitive (listed in
Figure 3.7), on the stream.

Figure 3.7 shows the sequence or primitives for the error management primitive.� �
*
CC_SETUP_REQ
CC_SETUP_RES
CC_PROCEEDING_REQ
CC_ALERTING_REQ
CC_PROGRESS_REQ
CC_CONT_REPORT_REQ
CC_MORE_INFO_REQ
CC_SETUP_COMPLETE_REQ
CC_SUSPEND_REQ
CC_RESUME_REQ
CC_RELEASE_REQ
CC_RELEASE_RES

REQ/RES Primitive *

CC_ERROR_ACK

Figure 3.7: Sequence of Primitives: Call Control Error Acknowledgement Service
 	

2006-01-02 15

Chapter 3: CCI Services Definition

3.2 User-Network Interface Services Definition

This section describes the required call control service primitives that define the UNI inter-
face.

The queue model for UNI is discussed in more detail in ITU-T Q.931. For Q.931 specific
conformance considerations, see [Addendum for Q.931 Conformance], page 197.

The queue model represents the operation of a call control connection in the abstract by a
pair of queues linking the two call control addresses. There is one queue for each direction
of signalling transfer. The ability of a user to add objects to a queue will be determined
by the behaviour of the user removing objects from that queue, and the state of the queue.
The pair of queues is considered to be available for each potential call. Objects that are
entered or removed from the queue are either as a result of interactions at the two call
control addresses, or as the result of CCS provider initiatives.

• A queue is empty until a setup object has been entered and can be returned to this
state, with loss of its contents, by the CCS provider.

• Objects may be entered into a queue as a result of the action of the source CCS user,
subject to control by the CCS provider.

• Objects may also be entered into a queue by the CCS provider.

• Objects are removed from the queue under the control of the receiving CCS user.

• Objects are normally removed under the control of the CCS user in the same order as
they were entered except:

• if the object is of a type defined to be able to advance ahead of the preceding
object, or

• if the following object is defined to be destructive with respect to the preceding
object on the queue. If necessary, the last object on the queue will be deleted to
allow a destructive object to be entered \- they will therefore always be added
to the queue. For example, "release" objects are defined to be destructive with
respect to all other objects.

Table B.1 shows the ordering relationship among the queue model objects.

16 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �
CC_SETUP_REQ

CC_SETUP_IND

SETUP

CC_PROGRESS_REQ

CC_PROGRESS_IND CC_OK_ACK

CC_ALERTING_REQ

CC_ALERTING_IND CC_OK_ACK

CC_PROCEEDING_REQ

CC_PROCEEDING_IND CC_OK_ACK

CALL PROCEEDING

ALERTING

PROGRESS

CONNECT

CONNECT ACKNOWLEDGE

CC_OK_ACK

CC_SETUP_COMPLETE_IND

CC_CONNECT_REQ

CC_OK_ACK

CC_CONNECT_IND

CC_SETUP_COMPLETE_REQ

(Network Side Only)

(User Side Only)

CC_OK_ACK

CC_SETUP_RES

CC_SETUP_CON

CC_MORE_INFO_REQ

CC_MORE_INFO_IND

CC_INFORMATION_REQ

CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_INFORMATION_IND

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

SETUP ACKNOWLEDGE

INFORMATION

INFORMATION

CONNECT
PROGRESS
ALERTING

CALL PROCEEDING

Figure 3.8: Sequence of Primitives: Call Control UNI Overview
 	
3.2.1 Call Setup Phase

A pair of queues is associated with a call between two call control addresses (facility group
and channel(s)) when the CCS provider receives a CC SETUP REQ primitive at one of the
call control addresses resulting in a setup object being entered into the queue. The queues
will remain associated with the call until a CC RELEASE REQ or CC RELEASE IND
(resulting in a release object) is either entered into or removed from a queue. Similarly,
in the queue from the called CCS user, objects can be entered into the queue only after
the setup object associated with the CC SETUP RES has been entered into the queue.
Alternatively, the called CCS user can enter a release object into the queue instead of the
setup object to terminate the call.

The call establishment procedure will fail if the CCS provider is unable to establish the call,
or if the destination CCS user is unable to accept the CC SETUP IND (see call failure and
call reject primitive definitions).

2006-01-02 17

Chapter 3: CCI Services Definition

3.2.1.1 User Primitives for Successful Call Setup

• CC SETUP REQ: This primitive requests that the CCS provider setup a call to the
specified destination (called party number).

• CC MORE INFO REQ: This primitive requests that the CCS provider provide more
information to establish the call. This primitive is not issued for en bloc signalling
mode.

• CC INFORMATION REQ: This primitive requests that the CCS provider provide
more information (digits) in addition to the destination (called party number) already
specified in the CC SETUP REQ and subsequent CC INFORMATION REQ primi-
tives. This primitive is not issued for en block signalling mode.

• CC SETUP RES: This primitive requests that the CCS provider accept a previous call
setup indication on the specified stream.

3.2.1.2 Provider Primitives for Successful Call Setup

• CC CALL REATTEMPT IND: This primitive indicates to the calling CCS user that
an event has caused call setup to fail on the selected address and that a reattempt
should be made (or has been made) on another call control address (facility group and
channel(s)). This primitive is only issued by the CCS provider if the CCS user is bound
at the channel level rather than the facility group or equipment group levels.

• CC SETUP IND: This primitive indicates to the CCS user that a call setup request has
been made by a user at the specified call control address (facility group and channel(s)).

• CC MORE INFO IND: This primitive indicates to the CCS user that more informa-
tion is required to establish the call. This primitive is not issued for en block signalling
mode.

• CC INFORMATION IND: This primitive indicates to the CCS user more informa-
tion (digits) in addition to the destination (called party number) already indicated
in the CC SETUP IND and subsequent CC INFORMATION IND primitives. This
primitive is not issued for en block signalling mode.

• CC INFO TIMEOUT IND: This primitive indicates to the called CCS user that a
timeout occurred while waiting for additional information (called party number). The
receiving CCS User should determine whether sufficient address digits have been re-
ceived and either disconnect the call with the CC DISCONNECT REQ primitive or
continue the call with CC SETUP RES. This primitive is not issued for en block sig-
nalling mode.

• CC SETUP CON : This primitive indicates to the CCS user that a call setup request
has been confirmed on the indicated call control address (channel(s)).

The sequence of primitives in a successful call setup is defined by the time sequence diagram
shown in Figure 3.9 . The sequence of primitives for the call response token value determi-
nation is shown in Figure 3.10 (procedures for call response token value determination are
discussed in section 4.1.3 and 4.1.4.)

18 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �
SETUP

CC_SETUP_IND

CC_SETUP_REQ

CC_MORE_INFO_REQ

SETUP ACKNOWLEDGE

INFORMATION

CC_INFORMATION_IND

CC_MORE_INFO_IND

CC_INFORMATION_REQ

CC_INFORMATION_REQ

INFORMATION

CC_INFORMATION_IND

CC_INFO_TIMEOUT_IND

CC_SETUP_COMPLETE_IND

CONNECT

CC_SETUP_RES

CC_OK_ACK

CC_SETUP_COMPLETE_REQ

CC_OK_ACK

CC_SETUP_CON

CONNECT ACKNOWLEDGE

T302

Figure 3.9: Sequence of Primitives: Call Control Call Setup Service
 	� �
CC_BIND_REQ

CC_BIND_ACK

(swith TOKEN_REQUEST set)

(returns cc_token_value)

Figure 3.10: Sequence of Primitives: Call Control Token Request Service
 	

If the CCS provider is unable to establish a call, it indicates this to the request by a
CC CALL REATTEMPT IND. This is shown in Figure 3.11 .

2006-01-02 19

Chapter 3: CCI Services Definition� �
CC_SETUP_REQ

CC_REATTEMPT_IND

Figure 3.11: Sequence of Primitives: Call Reattempt - CCS Provider
 	
The sequence of primitives for call reattempt on dual seizure are shown in Figure 3.12 .� �

CC_SETUP_REQ

CC_REATTEMPT_IND

CC_SETUP_REQ

CC_SETUP_IND

CC_SETUP_IND

CC_SETUP_CON

CC_SETUP_RES

CC_OK_ACK

SETUP

SETUP

CONNECT

Figure 3.12: Sequence of Primitives: Call Reattempt - Dual Seizure
 	
3.2.2 Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated with the
call between the selected call control addresses (facility group and channel(s)) during the
setup phase.

3.2.2.1 User Primitives for Successful Call Establishment

• CC PROCEEDING REQ: This primitive requests that the CCS provider indicate to
the call control peer that the call is proceeding and that all necessary information has
been received.

• CC ALERTING REQ: This primitive requests that the CCS provider indicate to the
call control peer that the terminating user is being alerted.

• CC PROGRESS REQ: This primitive requests that the CCS provider indicate to the
call control peer that the specified progress event has occurred.

• CC IBI REQ (CC DISCONNECT REQ): This primitive requests that the CCS
provider indicate to the call control peer that in-band information is now available.
This will also invite the peer to release the call.

20 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

• CC CONNECT REQ: This primitive requests that the CCS provider indicate to the
call control peer that the call has been connected.

• CC SETUP COMPLETE REQ: This primitive request that the CCS provider com-
plete the call setup.

3.2.2.2 Provider Primitives for Successful Call Establishment

• CC PROCEEDING IND: This primitive indicates to the CCS user that the call control
peer is proceeding and that all necessary information has been received.

• CC ALERTING IND: This primitive indicates to the CCS user that the terminating
user is being alerted.

• CC PROGRESS IND: This primitive indicates to the CCS user that the specified
progress event has occurred.

• CC IBI IND (CC DISCONNECT IND): This primitive indicates to the CCS user that
in-band information is now available. It also invites the CCS user to release the call.

• CC CONNECT IND: This primitive indicates to the CCS user that the call has been
connected.

• CC SETUP COMPLETE IND: This primitive indicates to the CCS user that the call
has completed setup.

3.2.2.3 Provider Primitives for Successful Call Setup

The sequence of primitives in a successful call establishment is defined by the time sequence
diagrams as shown in Figure 3.13 .

2006-01-02 21

Chapter 3: CCI Services Definition� �

CC_PROGRESS_REQ

CC_PROGRESS_IND CC_OK_ACK

CC_ALERTING_REQ

CC_ALERTING_IND CC_OK_ACK

CC_PROCEEDING_REQ

CC_PROCEEDING_IND CC_OK_ACK

CALL PROCEEDING

ALERTING

PROGRESS

CC_IBI_REQ

CC_OK_ACK

DISCONNECT

CC_IBI_IND

CONNECT

CONNECT ACKNOWLEDGE

CC_OK_ACK

CC_SETUP_COMPLETE_IND

CC_CONNECT_REQ

CC_OK_ACK

CC_CONNECT_IND

CC_SETUP_COMPLETE_REQ

(Network Side Only)

(User Side Only)

Figure 3.13: Sequence of Primitives: Call Control Successful Call Establishment Service
 	
3.2.3 Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing
objects of certain types to be inserted to the queues, as shown in Table X.

3.2.3.1 Suspend Service

User Primitives for Suspend Service

• CC SUSPEND REQ: This primitives requests that the CCS provider temporarily sus-
pend a call at the network, or indicate user suspension of a call.

• CC SUSPEND RES: This primitive indicates to the CCS provider that the CCS user
(Network) is accepting the request for suspension of the call.

• CC SUSPEND REJECT REQ: This primitive indicates to the CCS provider that the
CCS user (Network) is rejecting the request for suspension of the call, and the cause
for rejection.

Provider Primitives for Suspend Service

• CC SUSPEND IND: This primitive indicates to the CCS user that an established call
has been temporarily suspended at the network, or by the remote user.

• CC SUSPEND CON : This primitive confirms to the requesting CCS user (User) that
the call has been temporarily suspended at the network.

22 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

• CC SUSPEND REJECT IND: This primitive indicates to the requesting CCS user
(User) that the request to suspend the call has been rejected by the network, and the
cause for rejection.

Figure 3.14 and Figure 3.15 show the sequence of primitives for suspend service. The
sequence of primitives may remain incomplete if a CC RESET or a CC RELEASE primitive
occurs.

The sequence of primitives to suspend a call is defined in the time sequence diagram as
shown in Figure 3.14 and Figure 3.15 .� �

CC_SUSPEND_IND

CC_OK_ACK

CC_SUSPEND_REQ

CC_SUSPEND_RES

CC_SUSPEND_CON

SUSPEND

SUSPEND ACKNOWLEDGE

Figure 3.14: Sequence of Primitives: Call Control Network Suspend Service: Successful
 	� �

CC_SUSPEND_IND

CC_OK_ACK

CC_SUSPEND_REQ

CC_SUSPEND_REJECT_REQ

CC_SUSPEND_REJECT_IND

SUSPEND

SUSPEND REJECT

Figure 3.15: Sequence of Primitives: Call Control Network Suspend Service: Unsuccessful
 	
2006-01-02 23

Chapter 3: CCI Services Definition� �

CC_SUSPEND_IND

CC_SUSPEND_REQ
NOTIFY

CC_SUSPEND_CON

CC_SUSPEND_RES

Figure 3.16: Sequence of Primitives: Call Control User Suspend Service
 	
3.2.3.2 Resume Service

User Primitives for Resume Service

• CC RESUME REQ: This primitive request that the CCS provider resume a previously
network suspended call, or indicates that the user has resumed a call.

• CC RESUME RES: This primitive indicates to the CCS provider that the CCS user
(Network) is accepting the request for resumption of the call.

• CC RESUME REJECT REQ: This primitive indicates to the CCS provider that the
CCS user (Network) is rejecting the request for resumption of the call, and the cause
for rejection.

Provider Primitives for Resume Service

• CC RESUME IND: This primitive indicates to the CCS user that a previously sus-
pended call has been resumed at the network, or by the remote user.

• CC RESUME CON : This primitive confirms to the requesting CCS user (User) that
the call has been resumed at the network.

• CC RESUME REJECT IND: This primitive indicates to the requesting CCS user
(User) that the request to resume the call has been rejected by the network, and the
cause for rejection.

Figure 3.17 and Figure 3.18 show the sequence of primitives for resume service. The
sequence of primitives may remain incomplete if a CC RESET or a CC RELEASE primitive
occurs.

The sequence of primitives to resume a call is defined in the time sequence diagram as
shown in Figure 3.17 and Figure 3.18 .

24 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �

CC_RESUME_IND

CC_OK_ACK

CC_RESUME_REQ

CC_RESUME_RES

CC_RESUME_CON

RESUME

RESUME ACKNOWLEDGE

Figure 3.17: Sequence of Primitives: Call Control Resume Service: Successful
 	� �

CC_RESUME_IND

CC_OK_ACK

CC_RESUME_REQ

CC_RESUME_REJECT_REQ

CC_RESUME_REJECT_IND

RESUME

RESUME REJECT

Figure 3.18: Sequence of Primitives: Call Control Resume Service: Unsuccessful
 	� �

CC_RESUME_IND

CC_RESUME_REQ
NOTIFY

CC_RESUME_CON

CC_RESUME_RES

Figure 3.19: Sequence of Primitives: Call Control User Resume Service
 	
The sequence of primitives as shown above may remain incomplete if a CC RESET
or CC RELEASE primitive occurs (see Table 3). A CCS user must not issue a
CC RESUME REQ primitive if no CC SUSPEND REQ has been sent previously.
Following a reset procedure (CC RESET REQ or CC RESET IND), a CCS user may not
issue a CC RESUME REQ to resume a call suspended before the reset procedure was
signalled.

2006-01-02 25

Chapter 3: CCI Services Definition

3.2.4 Call Termination Phase

3.2.4.1 Call Reject Service

User Primitives for Call Reject Service

• CC REJECT REQ: This primitive indicates that the CCS user receiving the specified
CC SETUP IND requests that the specified call indication be rejected.

Provider Primitives for Call Reject Service

• CC REJECT IND: This primitive indicates to the calling CCS user that the call has
been rejected.

The sequence of events for rejecting a call setup attempt at the UNI is defined in the time
sequence diagram shown in Figure 3.20 .� �

CC_SETUP_IND

CC_OK_ACK

CC_SETUP_REQ

CC_REJECT_REQ

CC_REJECT_IND

SETUP

RELEASE COMPLETE

Figure 3.20: Sequence of Primitives: Rejecting a Call Setup
 	
3.2.4.2 Call Failure Service

Provider Primitives for Call Failure Service

• CC CALL FAILURE IND: This primitive indicates to the called CCS user that an
event has caused the call to fail and indicates the reason for the failure and the cause
value associated with the failure. The CCS user is required to release the call using
the indicated cause value in a CC DISCONNECT REQ primitive.

The sequence of events for error indications is described in the time sequence diagram shown
in Figure 3.21 .

26 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �

CC_CALL_FAILURE_IND

CC_DISCONNECT_REQ

CC_DISCONNECT_IND

DISCONNECT

DL_ESTABLISH_CON
STATUS

RESTART

Figure 3.21: Sequence of Primitives: Call Failure
 	
3.2.4.3 Call Release Service

The call release procedure is initialized by the insertion of a release object (associated with
a CC DISCONNECT REQ, CC RELEASE REQ, or CC REJECT REQ) in the queue.
As shown in Table 3, the release procedure is destructive with respect to other objects in
the queue, and eventually results in the emptying of queues and termination of the call.

The Release procedure invokes the following interactions:

A. A CC DISCONNECT REQ from the CCS user, followed by a CC RELEASE IND
from the CCS provider and a subsequent CC RELEASE RES from the CCS user; or

B. A CC DISCONNECT IND from the CCS provider, followed by a CC RELEASE REQ
from the CCS user and a subsequent CC RELEASE CON from the CCS provider.

The sequence of primitive depends on the origin of the release action. The sequence may
be:

1. invoked by the CCS user, with a request from that CCS user, leading to interaction
(A) with that CCS user and interaction (B) with the peer CCS user;

2. invoked by both CCS users, with a request from each of the CCS users, leading to
interaction (A) with both CCS users;

3. invoked by the CCS provider, leading to interaction (B) with both CCS users.
4. invoked independently by one CCS user and the CCS provider, leading to interaction

(A) with the originating CCS user and (B) with the peer CCS user.

User Primitives for Release Service

• CC DISCONNECT REQ: This primitive request that the CCS provider discon-
nect the B-Channel or indicate tones and announcements present. Tones and
announcements should be requested in the CC IBI REQ primitive rather than the
CC DISCONNECT REQ primitive.

• CC RELEASE REQ: This primitive requests that the CCS provider disconnect the
B-Channel (if not already disconnected) and release the call reference.

• CC RELEASE RES: This primitive indicates to the CCS provider that the CCS user
has accepted a release indication and has released the call reference.

2006-01-02 27

Chapter 3: CCI Services Definition

Provider Primitives for Release Service

• CC DISCONNECT IND: This primitive indicates that the remote CCS user or
provider has disconnected the B-Channel or has made tones and announcements
available. The CCS provider should indicate tones and announcements present only
with the CC IBI IND primitive rather than the CC DISCONNECT IND primitive.

• CC RELEASE IND: This primitive indicates that the remote CCS has disconnected
the B-Channel and released the call reference.

• CC RELEASE CON : This primitive confirms that the remove CCS has disconnected
the B-Channel and released the call reference.

The sequence of primitives as shown in Figure 3.22 , Figure 3.23 , Figure 3.24 , and
Figure 3.25 may remain incomplete if a CC RESTART primitive occurs.
A CCS user can release a call establishment attempt by issuing a CC DISCONNECT REQ.
The sequence of events is shown in Figure 3.22 , Figure 3.23 , Figure 3.24 , and Figure 3.25
.� �

CC_DISCONNECT_IND

CC_DISCONNECT_REQ
DISCONNECT

CC_RELEASE_REQ

CC_RELEASE_IND

RELEASE

CC_RELEASE_RES

CC_OK_ACK

RELEASE COMPLETE

CC_RELEASE_CON

Figure 3.22: Sequence of Primitives: CCS User Invoked Release
 	� �
CC_DISCONNECT_REQ CC_DISCONNECT_REQ

DISCONNECT

RELEASE

CC_RELEASE_CON CC_RELEASE_CON

Figure 3.23: Sequence of Primitives: Simultaneous CCS User Invoked Release
 	
28 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �

CC_DISCONNECT_IND

CC_RELEASE_CON

CC_DISCONNECT_IND

CC_RELEASE_CON

RELEASE

DISCONNECT

CC_RELEASE_REQCC_RELEASE_REQ

Figure 3.24: Sequence of Primitives: CCS Provider Invoked Release
 	� �

CC_DISCONNECT_IND

CC_DISCONNECT_REQ

CC_RELEASE_CON

DISCONNECT

CC_RELEASE_REQ

RELEASE

CC_RELEASE_CON

Figure 3.25: Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked
Release
 	
3.2.5 Call Management

3.2.5.1 User Primitives for Call Management

• CC RESTART REQ: This primitive requests the CCS provider to restart all the call
control addresses (signalling interface and channels) for the UNI interface.

3.2.5.2 Provider Primitives for Call Management

• CC RESTART CON : This primitive confirms to the requesting CCS user that all call
control addresses (signalling interface and channels) for the UNI interface have been
restarted and all calls are in the CCS IDLE state.

• CC MAINT IND: This primitive indicates to CCS user that various events have oc-
curred requiring maintenance notification (e.g., restart indication).

2006-01-02 29

Chapter 3: CCI Services Definition

3.3 Network-Network Interface Services Definition

This section describes the required call control service primitives that define the NNI inter-
face.

The queue model for NNI is discussed in more detail in ITU-T Q.764. For Q.764 specific
conformance considerations, see [Addendum for Q.764 Conformance], page 223. For ETSI
EN 300 356-1 V3.2.2 specific conformance considerations, see [Addendum for ETSI EN 300
356-1 V3.2.2 Conformance], page 271.� �

IAM

CC_SETUP_REQ

CC_SETUP_IND

CC_MORE_INFO_REQ

CC_INFORMATION_REQ

CC_INFORMATION_REQ

CC_OK_ACK

CC_OK_ACK

SAM

SAM

CC_INFORMATION_IND

CC_INFORMATION_IND

CC_SETUP_RES

CC_OK_ACK

CC_PROCEEDING_REQ

CC_OK_ACK

CC_ALERTING_REQ

CC_OK_ACK

CC_PROGRESS_REQ

CC_OK_ACK

CC_IBI_REQ

CC_OK_ACK

CC_CONNECT_REQ

CC_OK_ACK

CON
CPG
ACM

CC_SETUP_CON

CC_PROCEEDING_IND

ACM/CPG

ACM

ACM/CPG

ACM/CPG

CON/ANM

CC_ALERTING_IND

CC_PROGRESS_IND

CC_IBI_IND

CC_CONNECT_IND

CC_MORE_INFO_IND

Figure 3.26: Sequence of Primitives: Call Control NNI Overview
 	
3.3.1 Call Setup Phase

A pair of queues is associated with a call between the two call control addresses when the
CCS provider receives a CC SETUP REQ primitive at one of the call control addresses
resulting in a setup object being entered into the queue. The queues will remain associated
with the call until a CC RELEASE REQ (resulting in a release object) is either entered
into or removed from a queue. Similarly, in the queue from the called CCS user, objects can

30 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

be entered into the queue only after the setup object associated with the CC SETUP RES
has been entered into the queue. Alternatively, the called CCS user can enter a release
object into the queue instead of the setup object to terminate the call.

The call establishment procedure will fail if the CCS provider is unable to establish the call,
or if the destination CCS user is unable to accept the CC SETUP IND (see call release
primitive definition).

3.3.1.1 User Primitives for Successful Call Setup

• CC SETUP REQ: This primitive requests that the CCS provider setup a call to the
specified destination (called party address).

• CC MORE INFO REQ: This primitive requests that the CCS provider provide more
information to establish the call. This primitive is not issued for en block signalling
mode.

• CC INFORMATION REQ: This primitive requests that the CCS provider provide
more information (digits) in addition to the destination (called party number) already
specified in the CC SETUP REQ and subsequent CC INFORMATION REQ primi-
tives. This primitive is not issued for en block signalling mode.

• CC SETUP RES: This primitive requests that the CCS provider accept a previous call
setup indication on the specified stream.

3.3.1.2 Provider Primitives for Successful Call Setup

• CC CALL REATTEMPT IND: This primitive indicates to the calling CCS user that
an event has caused call setup to fail on the selected address and that a reattempt should
be made (or has been made) on another call control address (signalling interface and
circuit(s)). This primitive is only issued by the CCS provider if the CCS user is bound
at the circuit level rather than the circuit group or trunk group level.

• CC SETUP IND: This primitive indicates to the CCS user that a call setup request
has been made by a user at the specified call control address (circuit(s)).

• CC MORE INFO IND: This primitive indicates to the CCS user that more informa-
tion is required to establish the call. This primitive is not issued for en block signalling
mode.

• CC INFORMATION IND: This primitive indicates to the CCS user more informa-
tion (digits) in addition to the destination (called party number) already indicated
in the CC SETUP IND and subsequent CC INFORMATION IND primitives. This
primitive is not issued for en block signalling mode.

• CC INFO TIMEOUT IND: This primitive indicates to the called CCS user that a
timeout occurred while waiting for additional information (called party number). The
receiving CCS User should determine whether sufficient address digits have been re-
ceived and either disconnect the call with the CC DISCONNECT REQ primitive or
continue the call with CC SETUP RES.

• CC SETUP CON : This primitive indicates to the CCS user that a call setup request
has been confirmed on the indicated call control address (circuits(s)).

2006-01-02 31

Chapter 3: CCI Services Definition

The sequence of primitives in a successful call setup is defined by the time sequence diagrams
as shown in 〈undefined〉 [〈undefined〉], page 〈undefined〉 and Figure 3.27 .

The sequence of primitives for the call response token value determination is shown in
Figure 3.28 (procedures for call response token value determination are discussed in section
4.1.3 and 4.1.4.)� �

IAM

CC_SETUP_IND

CC_SETUP_REQ

CC_MORE_INFO_REQ

SAM

CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_INFORMATION_REQ

SAM

CC_INFORMATION_IND

CC_INFO_TIMEOUT_IND

CC_SETUP_COMPLETE_IND

CON

CC_SETUP_RES

CC_OK_ACK

CC_SETUP_COMPLETE_REQ

CC_OK_ACK

CC_SETUP_CON

T11

CC_MORE_INFO_IND

(no message)

(no message)

CC_OK_ACK

CC_OK_ACK

Figure 3.27: Sequence of Primitives: Call Control Call Setup Service: Overlap Sending
 	� �
CC_BIND_REQ

CC_BIND_ACK

(swith TOKEN_REQUEST set)

(returns cc_token_value)

Figure 3.28: Sequence of Primitives: Call Control Token Request Service
 	
If the CCS provider is unable to establish a call, it indicates this to the request by a
CC CALL REATTEMPT IND. This is shown in Figure 3.29 .

32 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �
CC_SETUP_REQ

CC_REATTEMPT_IND

Figure 3.29: Sequence of Primitives: Call Reattempt - CCS Provider
 	
The sequence of primitives for call reattempt on dual seizure are shown in Figure 3.30 .� �

CC_SETUP_REQ

CC_REATTEMPT_IND

CC_SETUP_REQ

CC_SETUP_IND

CC_SETUP_IND

CC_SETUP_CON

CC_SETUP_RES

CC_OK_ACK

IAN

IAM

CON

Figure 3.30: Sequence of Primitives: Call Reattempt - Dual Seizure
 	
3.3.2 Continuity Test Phase

The continuity test service is only applicable to the NNI.

During the continuity test phase, a pair of queues has already been associated
with the call between the selected call control addresses (signalling interface and
circuit(s)) during the setup phase. The continuity test phase begins when the CCS
provider returns a CC CONT TEST IND primitive in response to a CC SETUP REQ
primitive that had the ISUP NCI CONT CHECK REQUIRED flag set in the call
flags. The continuity test phase also begins when the CCS user responds with a
CC CONT TEST REQ primitive in response to a CC SETUP IND primitive that had
the ISUP NCI CONT CHECK REQUIRED flag set in the call flags.

Upon entering the continuity test phase, it is the responsibility of the CCS user to establish
a loop back on the call control address (signalling interface and circuit(s)) or to attach
tone generation and detection devices to the call control address (signalling interface and
circuit(s)).

3.3.2.1 Continuity Test Successful

2006-01-02 33

Chapter 3: CCI Services Definition

User Primitives for Successful Continuity Test

• CC SETUP REQ: This primitive, with the ISUP NCI CONT CHECK REQUIRED
flag set, requests that the CCS provider setup a call and include a continuity check
before the call is established.

• CC CONT CHECK REQ: This primitive requests that the CCS provider perform
a continuity check on the specified call control address (signalling interface and cir-
cuit(s)). This primitive is only necessary for performing continuity checks that are not
in conjunction with a call.

• CC CONT TEST REQ: This primitive requests that the CCS provider accept
an outstanding call setup indication. When the CC SETUP IND had the
ISUP NCI CONT CHECK REQUIRED flag set, it indicates to the CCS provider
that the necessary loop back device has been install on the call control address
(signalling interface and circuit(s)).

• CC CONT REPORT REQ: This primitive requests that the CCS provider indicate
to the remote CCS user that the continuity test has succeeded (cc result is set to
ISUP COT SUCCESS).

Provider Primitives for Successful Continuity Test

• CC SETUP IND: This primitive, with the ISUP NCI CONT CHECK REQUIRED
flag set, indicates to the CCS user that a call setup including a continuity check is
requested.

• CC CONT CHECK IND: This primitive indicates to the CCS user that a continuity
check was requested on the specified call control address (signalling interface and cir-
cuit(s)). This primitive is only necessary for performing continuity checks that are not
in conjunction with a call.

• CC CONT TEST IND: This primitive indicates that the remote CCS user
has accepted a call setup indication on the specified call control address (sig-
nalling interface and circuit(s)). When the CC SETUP IND primitive had the
ISUP NCI CONT CHECK REQUIRED flag set, it indicates to the CCS user that
the necessary loop back device has been installed on the remote end of the call control
address (signalling interface and circuit(s)). The CCS user receiving this primitive
must attach the necessary tone generation and detection devices to the circuit(s) and
perform the continuity test.

• CC CONT REPORT IND: This primitive indicates to the CCS user that the conti-
nuity test was successful.

The sequence of primitives in a successful continuity test associated with call setup when
continuity check is required on the circuit(s) is defined by the time sequence diagrams as
shown in Figure 3.31 .

34 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �

(depending on protocol, the
CC_CONT_TEST_IND might be

returned from the local
CCS provider)

IAM
(with ISUP_NCI_CONT_CHECK_REQUIRED)

CC_SETUP_REQ

(establish loopback)

CC_SETUP_IND
(with ISUP_NCI_CONT_CHECK_REQUIRED)

CC_CONT_TEST_REQ

LPA

(apply tone and check continuity)
CC_CONT_TEST_IND

SAM

CC_INFORMATION_REQ

CC_OK_ACK CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_OK_ACK

SAM

CC_INFORMATION_IND

CC_CONT_REPORT_REQ

CC_OK_ACK

COT

CC_CONT_REPORT_IND
(remove loopback)

LPA

CC_SETUP_RES

CC_SETUP_CON

(success)

Figure 3.31: Sequence of Primitives: Call Setup Continuity Test Service: Required: Suc-
cessful
 	

The sequence of primitives in a successful continuity test associated with call setup when
continuity check is being performed on a previous circuit is defined by the time sequence
diagrams as shown in Figure 3.32 .� �

(with ISUP_NCI_CONT_CHECK_PREVIOUS)
CC_SETUP_IND

IAM

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_PREVIOUS)

CC_SETUP_RES

CC_CONT_REPORT_IND

COT

CC_CONT_REPORT_REQ

CC_OK_ACK

CC_OK_ACK CC_INFORMATION_IND

CC_INFORMATION_REQ

CC_INFORMATION_REQ

CC_OK_ACK

SAM

CC_INFORMATION_IND

SAM

CON

CC_SETUP_CON

(success)

Figure 3.32: Sequence of Primitives: Call Setup Continuity Test Service: Previous: Suc-
cessful
 	

The sequence of primitives in a successful continuity test not associated with call setup is
defined by the time sequence diagrams as shown in Figure 3.33 .

2006-01-02 35

Chapter 3: CCI Services Definition� �
CC_CONT_CHECK_REQ

CC_CONT_CHECK_IND
(establish loopback)

CCR

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND

CC_CONT_TEST_REQ

(depending on protocol, the
CC_CONT_CHECK_CON might be

returned from the local
CCS provider)

REL
(success)

CC_RELEASE_REQ

CC_RELEASE_IND

RLC

CC_RELEASE_RES

CC_RELEASE_CON

(remove loopback)

Figure 3.33: Sequence of Primitives: Continuity Test Service: Successful
 	
3.3.2.2 Continuity Test Unsuccessful

User Primitives for Unsuccessful Continuity Test

• CC SETUP REQ: This primitive, with the ISUP NCI CONT CHECK REQUIRED
flag set, requests that the CCS provider setup a call and include a continuity check
before the call is established.

• CC CONT TEST REQ: This primitive requests that the CCS provider accept
an outstanding call setup indication. When the CC SETUP IND had the
ISUP NCI CONT CHECK REQUIRED flag set, it also indicates to the CCS
provider that the necessary loop back device has been install on the call control
address (signalling interface and circuit(s)).

• CC CONT REPORT REQ: This primitive requests that the CCS provider indicate
to the remote CCS user that the continuity test has failed (cc result is set to
ISUP COT FAILURE).

Provider Primitives for Unsuccessful Continuity Test

• CC SETUP IND: This primitive, with the ISUP NCI CONT CHECK REQUIRED
flag set, indicates to the CCS user that a call setup including a continuity check is
requested.

• CC CONT TEST IND: This primitive indicates that the remote CCS user
has accepted a call setup indication on the specified call control address (sig-
nalling interface and circuit(s)). When the CC SETUP IND primitive had the
ISUP NCI CONT CHECK REQUIRED flag set, it indicates to the CCS user that
the necessary loop back device hass been installed on the remote end of the call
control address (signalling interface and circuit(s)). The CCS user receiving this

36 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

primitive must attach the necessary tone generation and detection devices to the
circuit(s) and perform the continuity test.

• CC CONT REPORT IND: This primitive indicates to the CCS user that the conti-
nuity test failed.

• CC CALL REATTEMPT IND: This primitive indicates to the calling CCS user that
the continuity test failed and that a reattempt should be made (or has been made) on
another call control address (signalling interface and circuit(s)). This primitive is only
issued by the CCS provider if the CCS user is bound at the circuit level rather than
the circuit group or trunk group level.

The sequence of primitives for an unsuccessful continuity test associated with a call setup
is defined by the time sequence diagrams as shown in Figure 3.34 .� �

CC_SETUP_IND
(on a different circuit)

IAM

CC_SETUP_IND

IAM

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_REQUIRED)

(with ISUP_NCI_CONT_CHECK_REQUIRED)
(establish loopback)

CC_CONT_REPORT_REQ

CC_OK_ACK CC_CONT_REPORT_IND

CC_CALL_REATTEMPT_IND

COT
(failure)

(failure)

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND
(depending on protocol, the

returned from the local
CCS provider)

CC_CONT_TEST_IND might be

CC_CONT_TEST_REQ

CC_SETUP_REQ
(with ISUP_NCI_CONT_CHECK_REQUIRED)

Figure 3.34: Sequence of Primitives: Call Setup Continuity Test Service: Unsuccessful
 	

The sequence of primitives for an unsuccessful continuity test not associated with a call
setup is defined by the time sequence diagrams as shown in Figure 3.35 .

2006-01-02 37

Chapter 3: CCI Services Definition� �
CC_CONT_CHECK_REQ

CC_CONT_CHECK_IND
(establish loopback)

CCR

CC_CONT_REPORT_IND
(remove loopback)

CC_OK_ACK

CC_CONT_REPORT_REQ

COT

(apply tone and check continuity)

LPA

CC_CONT_TEST_IND

CC_CONT_TEST_REQ

(depending on protocol, the
CC_CONT_CHECK_CON might be

returned from the local
CCS provider)

(failure)

(failure)

Figure 3.35: Sequence of Primitives: Continuity Test Service: Unsuccessful
 	
3.3.3 Call Establishment Phase

During the call establishment phase, a pair of queues has already been associated
with the call between the selected call control addresses (signalling interface
and circuit(s)) during the setup phase. The call establishment phase begins
when the CCS provider returns a CC SETUP CON primitive (or receives a
CC CONT REPORT REQ primitive) in response to a CC SETUP REQ primitive (that
had the ISUP NCI CONT CHECK REQUIRED flag set). The call establishment phase
also begins when the CCS user responds with a CC SETUP RES primitive (or receives a
CC CONT REPORT IND primitive) in response to a CC SETUP IND primitive (that
had the ISUP NCI CONT CHECK REQUIRED flag set).

Upon entering the call establishment phase, it is the responsibility of the CCS user to
remove any loop back from the call control address (signalling interface and circuit(s)) or
to remove tone generation and detection devices from the call control address (signalling
interface and circuit(s)).

3.3.3.1 User Primitives for Successful Call Establishment

• CC PROCEEDING REQ: This primitive requests that the CCS provider indicate to
the call control peer that the call is proceeding.

• CC ALERTING REQ: This primitive requests that the CCS provider indicate to the
call control peer that the terminating user is being alerted.

• CC PROGRESS REQ: This primitive requests that the CCS provider indicate to the
call control peer that the specified progress event has occurred.

• CC IBI REQ: This primitive requests that the CCS provider indicate to the call control
peer that interworking has been encountered and in-band information is now available.
This will also inform the peer CCS user that no connect indication is pending.

• CC CONNECT REQ: This primitive requests that the CCS provider indicate to the
call control peer that the call has been connected.

38 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

• CC SETUP COMPLETE REQ: This primitive requests that the CCS provider com-
plete the call setup. This primitive is used in NNI mode for interworking with UNI
mode.

3.3.3.2 Provider Primitives for Successful Call Establishment

• CC PROCEEDING IND: This primitive indicates to the CCS user that the call control
peer is proceeding.

• CC ALERTING IND: This primitive indicates to the CCS user that the terminating
user is being alerted.

• CC PROGRESS IND: This primitive indicates to the CCS user that the specified
progress event has occurred.

• CC IBI IND: This primitive indicates to the CCS user that interworking has been
encountered and in-band information is now available. It also indicates to the CCS
user that no connect indication is pending.

• CC CONNECT IND: This primitive indicates to the CCS user that the call has been
connected.

• CC SETUP COMPLETE IND: This primitive indicates to the CCS user that the call
has completed setup. This primitive is used in NNI mode for interworking with UNI
mode.

The sequence of primitives in a successful call establishment is defined by the time sequence
diagrams as shown in Figure 3.36 .� �

CC_IBI_REQ

CC_IBI_IND

CC_PROGRESS_IND

CC_PROGRESS_REQ

CC_ALERTING_IND

CC_ALERTING_REQ

CC_PROCEEDING_IND

CC_PROCEEDING_REQ

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

CC_OK_ACK

ACM

ACM/CPG

CPG

ACM/CPG

CC_OK_ACK

CC_CONNECT_REQ

ANM/CON

CC_CONNECT_IND

Figure 3.36: Sequence of Primitives: Call Control Successful Call Establishment Service
 	
2006-01-02 39

Chapter 3: CCI Services Definition

3.3.4 Call Established Phase

Flow control of the call is done by management of the queue capacity, and by allowing
objects of certain types to be inserted to the queues, as shown in Table X.

3.3.4.1 User Primitives for Established Calls

• CC SUSPEND REQ: This primitives requests that the CCS provider temporarily sus-
pend a call.

• CC RESUME REQ: This primitive request that the CCS provider resume a previously
suspended call.

3.3.4.2 Provider Primitives for Established Calls

• CC SUSPEND IND: This primitive indicates to the CCS user that an established call
has been temporarily suspended.

• CC RESUME IND: This primitive indicates to the CCS user that a previously sus-
pended call has been resumed.

Figure 3.37 shows the sequence of primitives for suspension and resumption of estab-
lished calls. The sequence of primitives may remain incomplete if a CC RESET or a
CC RELEASE primitive occurs. The sequence of primitives to successfully suspend and
resume a call is defined in the time sequence diagram as shown in Figure 3.37 .� �

SUS

CC_SUSPEND_IND

CC_SUSPEND_REQ

CC_OK_ACK

RES

CC_RESUME_IND

CC_RESUME_REQ

CC_OK_ACK

Figure 3.37: Sequence of Primitives: Call Control Suspend and Resume Service
 	
The sequence of primitives as shown above may remain incomplete if a CC RESET
or CC RELEASE primitive occurs (see Table 3). A CCS user must not issue a
CC RESUME REQ primitive if no CC SUSPEND REQ has been sent previously.
Following a reset procedure (CC RESET REQ or CC RESET IND), a CCS user may not
issue a CC RESUME REQ to resume a call suspended before the reset procedure was
signalled.

3.3.5 Call Termination Phase

3.3.5.1 Call Reject Service

40 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

User Primitives for Call Reject Service

• CC REJECT REQ: This primitive indicates that the CCS user receiving the specified
CC SETUP IND requests that the specified call indication be rejected.

Provider Primitives for Call Reject Service

• CC REJECT IND: This primitive indicates to the calling CCS user that the call has
been rejected.

The sequence of events for rejecting a call setup attempt at the NNI is defined in the time
sequence diagram shown Figure 3.38 .� �

IAM

REL

CC_SETUP_IND

CC_SETUP_REQ

CC_REJECT_REQ

CC_REJECT_IND

RLC

Figure 3.38: Sequence of Primitives: CCS User Rejection of a Call Setup Attempt
 	
3.3.5.2 Call Failure Service

The call error procedure is indicated by the removal of a reattempt or failure object (associ-
ated with a local event) from the queue. The error procedure is destructive with respect to
other objects in the queue, and eventually results in the emptying of queues and termination
of the call.

Provider primitives for the Call Failure Service

• CC CALL FAILURE IND: This primitive indicates to the CCS user that an event
has caused the call to fail and indicates the reason for the failure and the cause value
associated with the failure. The CCS user is required to immediately disconnect the
circuit(s) and release the call on any previous legs using the indicated cause value in
the primitive.

The sequence of primitives for call failure are shown in Figure 3.39 .

2006-01-02 41

Chapter 3: CCI Services Definition� �
Unexpected Message

Timeout
BLO/CGB/RSC/GRS

CC_CALL_FAILURE_IND

exchanged automatically.)
(Other messages are possibly

Figure 3.39: Sequence of Primitives: Call Failure
 	
3.3.5.3 Call Release Service

The call release procedure is initialized by the insertion of a release object (associated
with a CC RELEASE REQ) into the queue. As shown in Table 3, the release procedure
is destructive with respect to other objects in the queue, and eventually results in the
emptying of queues and termination of the call.

The release procedure invokes the following interactions:

A. a CC RELEASE REQ from the CCS user, followed by a CC RELEASE CON from
the CCS provider; or

B. A CC RELEASE IND from the CCS provider, followed by a CC RELEASE REQ
from the CCS user.

The sequence of primitives depends on the origin of the release action. The sequence may
be:

1. invoked by one CCS user, with a request from that CCS user, leading to interaction
(A) with that CCS user and interaction (B) with the peer CCS user;

2. invoked by both CCS users, with a request from each of the CCS users, leading to
interaction (A) with both CCS users;

3. invoked by the CCS provider, leading to interaction (B) with both CCS users;

4. invoked independently by on CCS user and the CCS provider, leading to interaction
(A) with the originating CCS user and (B) with the peer CCS user.

User primitives for the Release Service

• CC RELEASE REQ: This primitive request that the CCS provider release the call.

• CC RELEASE RES: This primitive indicates to the CCS provider that the CCS user
has accepted a release indication.

Provider primitives for the Release Service

• CC RELEASE IND: This primitive indicates to the CCS user that the call has been
released.

42 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

• CC RELEASE CON : This primitive indicates to the CCS user that the release request
has been confirmed.

The sequence of primitives as shown in Figure 3.40 , Figure 3.41 , Figure 3.42 , and
Figure 3.43 , may remain incomplete if a CC RESET primitive occurs.

A CCS user can release a call establishment attempt by issuing a CC RELEASE REQ. The
sequence of events is shown in Figure 3.40 , Figure 3.41 , Figure 3.42 , and Figure 3.43 .� �

REL

RLC

CC_RELEASE_IND

CC_OK_ACK

CC_RELEASE_REQ

CC_RELEASE_RES

CC_RELEASE_CON

Figure 3.40: Sequence of Primitives: CCS User Invoked Release
 	� �
CC_RELEASE_REQCC_RELEASE_REQ

REL

RLC

CC_RELEASE_CONCC_RELEASE_CON

Figure 3.41: Sequence of Primitives: Simultaneous CCS User Invoked Release
 	
2006-01-02 43

Chapter 3: CCI Services Definition� �

CC_RELEASE_IND

REL

CC_CALL_FAILURE_IND

CC_OK_ACK

CC_RELEASE_RES
RLC

Figure 3.42: Sequence of Primitives: CCS Provider Invoked Release
 	� �
CC_RELEASE_REQ

CC_CALL_FAILURE_IND

REL

RLCCC_RELEASE_IND

Figure 3.43: Sequence of Primitives: Simultaneous CCS User and CCS Provider Invoked
Release
 	
3.3.6 Circuit Management Services

3.3.6.1 Reset Service

The reset service is used by the CCS user or management to resynchronize the use of the
call, or by the CCS provider to report detected loss of a unrecoverable call.

The reset service is only applicable to the NNI.

The reset procedure invokes the following interactions:

A. a CC RESET REQ from the CCS user, followed by a CC RESET CON from the CCS
provider; or

B. a CC RESET IND from the CCS provider, followed by a CC RESET RES from the
CCS user.

The complete sequence of primitives depends upon the origin of the reset action. The reset
service may be:

1. invoked by one CCS user, leading to interaction (A) with that CCS user and interaction
(B) with the peer CCS user.

2. invoked by both CCS users, leading to interaction (A) with both CCS users;

3. invoked by the CCS provider, leading to interaction (B) with both CCS users;

4. invoked by one CCS user and the CCS provider, leading to interaction (A) with the
originating CCS user and (B) with the peer CCS user.

44 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

User Primitives for Reset Service

• CC RESET REQ: This primitive requests that the CCS provider reset the specified
call control address (circuit or circuit group).

• CC RESET RES: This primitive indicates to the CCS provider that the CCS user has
accepted a reset indication and has performed local reset of the specified call control
address (circuit or circuit group).1

Provider Primitives for Reset Service

• CC RESET IND: This primitive indicates to the CCS user that the user should reset
the specified call control address (circuit or circuit group).

• CC RESET CON : This primitive indicates to the CCS user that the specified call
control address (circuit or circuit group) has been successfully reset by the peer.

The sequence of primitives are shown in Figure 3.44 , Figure 3.45 , Figure 3.46 , and
Figure 3.48 .� �

CC_RESET_IND

CC_OK_ACK

CC_RESET_REQ

CC_RESET_RES

CC_RESET_CON

RSC/GRS

RLC/GRA

Figure 3.44: Sequence of Primitives: CCS User Invoked Reset
 	
2

1 Note that the CC RESET RES primitive is not required and is only provided for completeness. The CCS
provider is allowed to acknowledge the reset request to the peer CCS user upon receipt of the necessary
protocol messages. This permits automatic completion of the reset service at the receiving CCS provider
without he presence or involvement of a management entity associated with the receiving provider.

2 Note that in Figure 3.44 additional primitives may be issued by the CCS provider to a CCS call control
user if a CCS call control user is engaged in a call.

2006-01-02 45

Chapter 3: CCI Services Definition� �
CC_RESET_REQCC_RESET_REQ

RLC/GRA

RSC/GRS

CC_RESET_CON CC_RESET_CON

Figure 3.45: Sequence of Primitives: Simultaneous CCS User Invoked Reset
 	

3� �

CC_RESET_IND

CC_OK_ACK

CC_RESET_RES

CC_RESET_IND

CC_OK_ACK

CC_RESET_RES

RSC

RLC

Figure 3.46: Sequence of Primitives: CCS Provider Invoked Reset
 	

4

3 Note that in Figure 3.45 additional primitives may be issued by the CCS provider to a CCS call control
user if a CCS call control user is engaged in a call.

4 Note that in Figure 3.46 additional primitives may be issued by the CCS provider to a CCS call control
user if a CCS call control user is engaged in a call.

46 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition� �

CC_RESET_IND

CC_RESET_REQ

RSC

CC_OK_ACK

CC_RESET_RESRLC

CC_RESET_CON

Figure 3.47: Sequence of Primitives: Simultaneous CCS user and CCS Provider Invoked
Reset
 	

5

3.3.6.2 Blocking Service

The blocking service is used by the CCS user or management to effect local maintenance
or hardware blocking on circuits, or by the CCS provider to indicate to CCS user or man-
agement the remote maintenance or hardware blocking of circuits.

The blocking service is only applicable to the NNI.

The blocking service provides for the local and remote blocking of call control addresses
(signalling interface and circuit or circuit group) either for maintenance oriented or hardware
failure purposes.

Blocking should only be invoked from streams that are listening on a circuit group that
includes the circuits for which blocking is requested, or the CC DEFAULT LISTENER.
Maintenance blocking will also only be indicated on streams that are listening on circuit
group that includes the circuits for which blocking is requested, or in the absence of such a
stream, the CC DEFAULT LISTENER. When no stream is available to report maintenance
blocking indications, the indication should be responded to by the CCS provider without
user or management indication.

User Primitives for Blocking Service

• CC BLOCKING REQ: This primitive requests that the specified call control
address(es) (signalling interface and circuit or circuit group) be locally blocked either
for maintenance oriented or hardware failure purposes.

• CC BLOCKING RES: This primitive accepts a request and indicates the call con-
trol address(es) (circuit or circuit group) that were remotely blocked for maintenance
oriented or hardware failure purposes.6

5 Note that in Figure 3.48 additional primitives may be issued by the CCS provider to a CCS call control
user if a CCS call control user is engaged in a call.

6 Note that the CC BLOCKING RES primitive is not required and is only provided for completeness. The
CCS provider is allowed to acknowledge the blocking request to the peer CCS user upon receipt of the

2006-01-02 47

Chapter 3: CCI Services Definition

Provider Primitives for Blocking Service

• CC BLOCKING IND: This primitive indicates that the CCS user has requested that
the specified call control address(es) (signalling interface and circuit or circuit group)
be remotely blocked either for maintenance oriented or hardware failure purposes.

• CC BLOCKING CON : This primitive indicates that the remote CCS user has con-
firmed the specified call control address(es) (signalling interfaces and circuit or circuit
group) as locally blocked either for maintenance oriented or hardware failure purposes

The sequence of primitives are shown in Figure 3.48 .� �

CC_BLOCKING_IND

CC_OK_ACK

CC_BLOCKING_REQ

CC_BLOCKING_RES

CC_BLOCKING_CON

BLO/CGB

BLA/CGBA

Figure 3.48: Sequence of Primitives: Successful Blocking Service
 	
3.3.6.3 Unblocking Service

The unblocking service is only applicable to the NNI.
The unblocking service provides for the local and remote unblocking of call control addresses
(signalling interface and circuit or circuit group) either for maintenance oriented or hardware
failure purposes.

User Primitives for Unblocking Service

• CC UNBLOCKING REQ: This primitive requests that the specified call control ad-
dress(es) (signalling interfaces and circuit or circuit groups) be locally unblocked either
for maintenance oriented or hardware failure purposes.

• CC UNBLOCKING RES: This primitive accepts a request and indicates the call con-
trol address(es) (circuit or circuit group) that were remotely unblocked for maintenance
oriented or hardware failure purposes.7

necessary protocol messages. This permits automatic completion of the blocking service at the receiving
CCS provider without he presence or involvement of a management entity associated with the receiving
provider.

7 Note that the CC UNBLOCKING RES primitive is not required and is only provided for completeness. The
CCS provider is allowed to acknowledge the unblocking request to the peer CCS user upon receipt of the
necessary protocol messages. This permits automatic completion of the unblocking service at the receiving
CCS provider without he presence or involvement of a management entity associated with the receiving
provider.

48 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Services Definition

Provider Primitives for Unblocking Service

• CC UNBLOCKING IND: This primitive indicates that the CCS user has requested
that the specified call control address(es) (signalling interface and circuit or circuit
group) be remotely blocked either for maintenance oriented or hardware failure pur-
poses.

• CC UNBLOCKING CON : This primitive indicates that the remote CCS user has
confirmed the specified call control address(es) (signalling interfaces and circuit or
circuit group) as locally unblocked either for maintenance oriented or hardware failure
purposes.

The sequence of primitives are shown in Figure 3.49 .� �

CC_UNBLOCKING_IND

CC_OK_ACK

CC_UNBLOCKING_REQ

CC_UNBLOCKING_RES

CC_UNBLOCKING_CON

UBL/CGU

UBA/CGUA

Figure 3.49: Sequence of Primitives: Successful Unblocking Service
 	
3.3.6.4 Query Service

The query service is only applicable to the NNI.

The query service provides for the query of the remote state and blocking level of call control
addresses (signalling interface and circuit group).

User Primitives for Query Service

• CC QUERY REQ: This primitive request that the specified call control address(es)
(signalling interfaces and circuit group) be queried for remote state and blocking level.

• CC QUERY RES: This primitive accepts a request and indicates the local state and
blocking level for the previously requested specified call control addresses (circuit
group).8

Provider Primitives for Query Service

• CC QUERY IND: This primitive indicates that the CCS user has requested that the

8 Note that the CC QUERY RES primitive is not required and is only provided for completeness. The CCS
provider is allowed to acknowledge the query request to the peer CCS user upon receipt of the necessary
protocol messages. This permits automatic completion of the query service at the receiving CCS provider
without he presence or involvement of a management entity associated with the receiving provider.

2006-01-02 49

Chapter 3: CCI Services Definition

local state and blocking level for the call control address(es) (signalling interface and
circuit group).

• CC QUERY CON : This primitive indicates that the remote CCS user has confirmed
the specified call control addresses (signalling interface and circuit group) and has
returned the remote state and blocking level for each address.

The sequence of primitives are shown in Figure 3.50 .� �

CC_TIMEOUT_IND

CC_DISCONNECT_REQ

CC_DISCONNECT_IND

DISCONNECT

DL_ESTABLISH_CON

Figure 3.50: Sequence of Primitives: Successful Query Service
 	

50 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4 CCI Primitives

This section describes the format and parameters of the CCI primitives (Appendix A [Map-
ping of CCI Primitives to Q.931], page 275 and Appendix B [Mapping of CCI Primitives to
Q.764], page 277. shows the mapping of CCI primitives fo the primitives defined in Q.931
and Q.764). In addition, it discusses the states the primitive is valid in, the resulting state,
and the acknowledgement that the primitive expects. (The state/event tables for these
primitives are shown in Appendix C [State/Event Tables], page 279. The precedence tables
for the CCI primitives are shown in Appendix D [Primitive Precedence Tables], page 281.)
Rules for ITU-T conformance are described in [Addendum for Q.931 Conformance], page 197
and [Addendum for Q.764 Conformance], page 223 to this document.
Tables 5, 6, and 7 provide a summary of the CCS primitives and their parameters.

2006-01-02 51

Chapter 4: CCI Primitives

4.1 Management Primitives

These primitives apply to UNI (User and Network) and NNI.

4.1.1 Call Control Information Request

CC INFO REQ

This primitive request the CCS provider to return the values of all supported protocol
parameters (see under CC INFO ACK), and also the current state of the CCS provider (as
defined in Appendix C [State/Event Tables], page 279). This primitive does not affect the
state of the CCS provider and does not appear in the state tables.

Format

The format of the message is one M PCPROTO message block and its structure is as
follows:

typedef struct CC_info_req {

ulong cc_primitive; /* always CC_INFO_REQ */

} CC_info_req_t;

Parameters

cc primitive
Indicates the primitive type.

Valid States

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Acknowledgements

This primitive requires the CCS provider to generate one of the following acknowledgements
upon receipt of the primitive:
— Successful : Acknowledgement of the primitive via the CC INFO ACK primitive.
— Non-fatal errors: There are no errors associated with the issuance of this primitive.

52 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.2 Call Control Information Acknowledgement

CC INFO ACK

This primitive indicates to the CCS user any relevant protocol-dependent parameters. It
should be initiated in response to the CC INFO REQ primitive described above.

Format
The format of this message is one M PCPROTO message block and its structure is as
follows:

typedef struct CC_info_ack {

ulong cc_primitive; /* always CC_INFO_ACK */

/* FIXME ... more ... */

} CC_info_ack_t;

Parameters

The above fields have the following meaning:

cc primitive
Indicates the primitive type.

Flags

Valid States

This primitive is valid in any state in response to a CC INFO REQ primitive.

New State

The state remains the same.

2006-01-02 53

Chapter 4: CCI Primitives

4.1.3 Protocol Address Request

CC ADDR REQ

This primitive requests that the CCS provider return information concerning the call control
addresses upon which the CCS user is bound or engage in a call.
The format of the message is one M PROTO message block and its structure is as follows:

typedef struct CC_addr_req {

ulong cc_primitive; /* always CC_ADDR_REQ */

ulong cc_call_ref; /* call reference */

} CC_addr_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference for which to obtain the connected address.

Valid States

This primitive is valid in any state.

New State

The new state is CCS WACK AREQ.

Rules

• If the call reference is specified as zero (0), then no connected address information will
be returned in the CC ADDR ACK.

Acknowledgements

The CCS provider will generate on of the following acknowledgements upon receipt of the
CC ADDR REQ primitive:
— Successful : Correct acknowledgement of the primitive is indicated via the

CC ADDR ACK primitive.
— Unsuccessful (Non-fatal errors): These errors will be indicated via the

CC ERROR ACK primitive. The applicable non-fatal errors are as follows:

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

54 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.4 Protocol Address Acknowledgement

CC ADDR ACK

This primitive acknowledges the corresponding request primitive and is used by the CCS
provider to return information concerning the bound and connected protocol addresses for
the stream.
The format of the message is one M PROTO message block and its structure is as follows:

typedef struct CC_addr_ack {

ulong cc_primitive; /* always CC_ADDR_ACK */

ulong cc_bind_length; /* length of bound address */

ulong cc_bind_offset; /* offset of bound address */

ulong cc_call_ref; /* call reference */

ulong cc_conn_length; /* length of connected address */

ulong cc_conn_offset; /* offset of connected address */

} CC_addr_ack_t;

Parameters

cc primitive
Indicates the primitive type.

cc bind length
Indicates the length of the bound call control address.

cc bind offset
Indicates the offset of the bound call control address.

cc call ref Indicates the call reference for the connected call control address.

cc conn length
Indicates the length of the connected call control address.

cc conn offset
Indicates the offset of the connected call control address.

Valid State

This primitive is valid in state CC WACK AREQ.

New State

The new state is the state previous to the CC ADDR REQ.

Rules

• If the requesting stream is not bound to a call control address, the CCS provider will
code the cc bind length and cc bind offset fields to zero. Otherwise, the CCS provider
will return the same call control address that was returned in the CC BIND ACK.

• If the requesting stream is not connected to a call, the CCS provider will code the
cc conn length and cc conn offset fields to zero. Otherwise, the CCS provider will
indicate the call control address (circuit) upon which the call is connected.

2006-01-02 55

Chapter 4: CCI Primitives

4.1.5 Bind Protocol Address Request

CC BIND REQ

This primitive requests that the CCS provider bind a CCS user entity to a call control
address (circuit, circuit group) and negotiate the number of setup indications allowed to be
outstanding by the CCS provider for the specified CCS user entity being bound.

Format
The format of the message is one M PROTO message block and its structure is as follows:

typedef struct CC_bind_req {

ulong cc_primitive; /* always CC_BIND_REQ */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* offset of address */

ulong cc_setup_ind; /* req # of setup inds to be queued */

ulong cc_bind_flags; /* bind options flags */

} CC_bind_req_t;

/* Flags associated with CC_BIND_REQ */

#define CC_DEFAULT_LISTENER 0x000000001UL

#define CC_TOKEN_REQUEST 0x000000002UL

#define CC_MANAGEMENT 0x000000004UL

#define CC_TEST 0x000000008UL

#define CC_MAINTENANCE 0x000000010UL

Parameters

cc primitive
Is the primitive type.

cc addr length
Is the length in bytes of the call control (circuit, circuit group) address to be
bound to the stream.

cc addr offset
Is the offset from the beginning of the M PROTO block where the call control
(circuit, circuit group) address begins.

cc setup ind
Is the requested number of setup indications (simultaneous incoming calls) al-
lowed to be outstanding by the CCS provider for the specified protocol address.
(If the number of outstanding setup indications equals cc setup ind, the CCS
provider need not discard further incoming setup indications, but may choose to
queue them internally until the number of outstanding setup indications drops
below the cc setup ind number.) Only one stream per call control address is
allowed to have a cc setup ind number value greater than zero. This indicates
to the CCS provider that this stream is the listener stream for the CCS user.
This stream will be used by the CCS provider for setup indications for that call
control address.
if a stream is bound as a listener stream, it is still able to initiate outgoing call
setup requests.

56 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

cc bind flags
See "Flags" below.

Flags

CC DEFAULT LISTENER
When set, this flag specifies that this stream is the "default listener stream."
This stream is used to pass setup indications (or continuity check requests)
for all incoming calls that contain protocol identifiers that are not bound to
any other listener, or when a listener stream with cc setup ind value of greater
than zero is not found. Also, the default listener will receive all incoming
call indications that contain no user data (i.e., test calls) and all maintenance
indications (i.e., CC MAINT IND). Only one default listener stream is allowed
per occurrence of CCI. An attempt to bind a default listener stream when one
is already bound should result in an error (of type CCADDRBUSY).

CC TOKEN REQUEST
When set, this flag specifies to the CCS provider that the CCS user has re-
quested that a "token" be assigned to the stream (to be used in the call re-
sponse message), and the token value be returned to the CCS user via the
CC BIND ACK primitive. The token assigned by the CCS provider can then
be used by the CCS user in a subsequent CC SETUP RES primitive to identify
the stream on which the call is to be established.

CC MANAGEMENT
When set, this flag specifies to the CCS provider that this stream is to be used
for circuit management indications for the specified addresses.

CC TEST
When set, this flag specifies to the CCS provider that this stream is to be used
for continuity and test call indications for the specified addresses.

CC MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is to be used
for maintenance indications for the specified addresses.

Valid States

This primitive is valid in state CCS UNBND (see Appendix C [State/Event Tables],
page 279).

New State

The new state is CCS WACK BREQ.

Acknowledgements

The CCS provider will generate one of the following acknowledgements upon receipt of the
CC BIND REQ primitive:
— Successful : Correct acknowledgement of the primitive is indicated via the

CC BIND ACK primitive.

2006-01-02 57

Chapter 4: CCI Primitives

— Non-fatal errors: These errors will be indicated via the CC ERROR ACK primitive.
The applicable non-fatal errors are as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADADDR
The call control address was in an incorrect format or the address contained
illegal information. It is not intended to indicate protocol errors.

CCNOADDR
The CCS user did not provide a call control address and the CCS provider
could not allocate an address to the user.

CCADDRBUSY
The CCS user attempted to bind a second stream to a call control address
with the cc setup ind number set to a non-zero value, or attempted to
bind a second stream with the CC DEFAULT LISTENER flag value set
to non-zero.

CCBADFLAG
The flags were invalid or unsupported, or the combination of flags
was invalid. This error is returned if more than one of CC TEST,
CC MANAGEMENT, or CC MAINTENANCE flags are set.

CCBADPRIM
The primitive format was incorrect (i.e. too short).

CCACCESS
The user did not have proper permissions.

58 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.6 Bind Protocol Address Acknowledgement

CC BIND ACK

This primitive indicates to the CCS user that the specified call control user entity has
been bound to the requested call control address and that the specified number of connect
indications are allowed to be queued by the CCS provider for the specified network address.

Format
The format of the message is one M PCPROTO message block, and its structure is the
following:

typedef struct CC_bind_ack {

ulong cc_primitive; /* always CC_BIND_ACK */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* offset of address */

ulong cc_setup_ind; /* setup indications */

ulong cc_token_value; /* setup response token value */

} CC_bind_ack_t;

Parameters

cc primitive
Indicates the primitive type.

cc addr length
Is the length of the call control address that was bound.

cc addr offset
Is the offset from the beginning of the M PCPROTO block where the call
control address begins.

cc setup ind
Is the accepted number of setup indications allowed to be outstanding by the
CCS provider for the specified call control address. If its value is zero, this
stream cannot accept CC SETUP IND messages. If its value is greater than
zero, then the CCS user can accept CC SETUP IND messages up to the value
specified in this parameter before having to respond with a CC SETUP RES
or a CC DISCONNECT REQ message.

cc token value
Conveys the value of the "token" assigned to this stream that can be used by
the CCS user in a CC SETUP RES primitive to accept a call on this stream.
It is a non-zero value, and is unique to all streams bound to the CCS provider.

The proper alignment of the address in the M PCPROTO message block is not guaranteed.

Rules

The following rules apply to the binding of the specified call control address to the stream:
• If the cc addr length field in the CC BIND REQ primitive is zero, then the CCS

provider is to assign a call control address to the user.

2006-01-02 59

Chapter 4: CCI Primitives

• The CCS provider is to bind the call control address as specified in the CC BIND REQ
primitive. If the CCS provider cannot bind the specified address, it may assign another
call control address to the user. It is the call control user’s responsibility to check the
call control address returned in the CC BIND ACK primitive to see if it is the same
as the one requested.

The following rules apply to negotiating cc setup ind argument:
• The cc setup ind number in the CC BIND ACK primitive must be less than or equal

to the corresponding requested number as indicated in the CC BIND REQ primitive.
• Only one stream that is bound to the indicated call control address may have a

negotiated accepted number of maximum setup indications greater than zero. If a
CC BIND REQ primitive specifies a value greater than zero, but another stream has
already bound itself to the given call control address with a value greater than zero,
the CCS provider should assign another protocol address to the user.

• If a stream with cc setup ind number greater than zero is used to accept a call, the
stream will be found busy during the duration of that call and no other streams may
be bound to that call control address with a cc setup ind number greater than zero.
This will prevent more than one stream bound to the identical call control address from
accepting setup indications.

• A stream requesting a cc setup ind number of zero should always be legal. This indi-
cates to the CCS provider that the stream is to be used to request call setup only.

• A stream with a negotiated cc setup ind number greater than zero may generate setup
requests or accept setup indications.

If the above rules result in an error condition, then the CCS provider must issue a
CC ERROR ACK primitive to the CCS user specifying the error as defined in the
description of the CC BIND REQ primitive.

Valid States

This primitive is in response to a CC BIND REQ primitive and is valid in the state
CCS WACK BREQ.

New State

The new state is CCS IDLE.

60 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.7 Unbind Protocol Address Request

CC UNBIND REQ

This primitive request that the CCS provider unbind the CCS user entity that was previously
bound to the call control address.

Format
The format of the message is one M PROTO block, and its structure is as follows:

typedef struct CC_unbind_req {

ulong cc_primitive; /* always CC_UNBIND_REQ */

} CC_unbind_req_t;

Parameters

cc primitive
Indicates the primitive type.

Valid States

This primitive is valid in the CCS IDLE state.

New State

The new state is CCS WACK UREQ.

Acknowledgements

This primitive requires the CCS provider to generate the following acknowledgements upon
receipt of the primitive:
— Successful : Correct acknowledgement of the primitive is indicated via the CC OK ACK

primitive.
— Unsuccessful (Non-fatal errors): These errors will be indicated via the

CC ERROR ACK primitive. The applicable non-fatal errors are as follows:

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 61

Chapter 4: CCI Primitives

4.1.8 Call Processing Options Management Request

CC OPTMGMT REQ

This primitive allows the CCS user to manage the call processing parameter values associ-
ated with the stream.

Format
The format of the message is one M PROTO message block, and its structure is as follows:

typedef struct CC_optmgmt_req {

ulong cc_primitive; /* always CC_OPTMGMT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* length of option values */

ulong cc_opt_offset; /* offset of option values */

ulong cc_opt_flags; /* option flags */

} CC_optmgmt_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference for which to manage options.

cc opt length
Specifies the length of the default values of the options parameters as selected
by the CCS user. These values will be used in subsequent CC SETUP REQ
primitives on the stream that do not specify values for these options. If the
CCS user cannot determine the value of an option, it value should be set to
CC UNKNOWN. If the CCS user does not specify any option paramter values,
the length of this field should be set to zero.

cc opt offset
Specifies the offset of the options parameters from the beginning of the
M PROTO message block.

cc opt flags
See "Flags" below.

Flags

Valid States

This primitive is valid in the CCS IDLE state.

New State

The new state is CCS WACK OPTREQ.

Acknowledgements

The CC OPTMGMT REQ primitive requires the CCS provider to generate one of the
following acknowledgements upon receipt of the primitive:

62 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

— Successful : Acknowledgement is via the CC OK ACK primitive. At successful com-
pletions, the resulting state is CCS IDLE.

— Non-fatal errors: These errors are indicated in the CC ERROR ACK primitive. The
resulting state remains unchanged. The applicable non-fatal errors are defined as fol-
lows:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADOPT
The option parameter values specified are outside the range supported by
the CCS provider.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The flags were invalid or unsupported, or the combination of flags was
invalid.

CCBADPRIM
The primitive format was incorrect (i.e. too short).

CCACCESS
The user did not have proper permissions.

2006-01-02 63

Chapter 4: CCI Primitives

4.1.9 Call Processing Options Management Acknowledgement

CC OPTMGMT ACK

This primitive allows the CCS user to manage the call processing parameter values associ-
ated with the stream.

Format
The format of the message is one M PCPROTO message block, and it structure is as
follows:

typedef struct CC_optmgmt_ack {

ulong cc_primitive; /* always CC_OPTMGMT_ACK */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* length of option values */

ulong cc_opt_offset; /* offset of option values */

ulong cc_opt_flags; /* option flags */

} CC_optmgmt_ack_t;

Parameters

Flags

Valid States

This primitive is valid in any state.

New State

The new state is unchanged.

Acknowledgements

64 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.10 Error Acknowledgement

CC ERROR ACK

This primitive indicates to the CCS user that a non-fatal error has occurred in the last
CCS user originated primitive. This may only be initiated as an acknowledgement for those
primitives that require one. It also indicates to the user that no action was taken on the
primitive that caused the error.

Format
The format of the mssage is one M PCPROTO message block, and its structure is as follows:

typedef struct CC_error_ack {

ulong cc_primitive; /* always CC_ERROR_ACK */

ulong cc_error_primitive; /* primitive in error */

ulong cc_error_type; /* CCI error code */

ulong cc_unix_error; /* UNIX system error code */

ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_error_ack_t;

Parameters

cc primitive
Identifies the primitive type.

cc error primitive
Identifies the primitive type that cause the error.

cc error type
Contains the Call Control Interface error code.

cc unix error
Contains the UNIX system error code. This may only be non-zero if the
cc error type is equal to CCSYSERR.

cc state Identifies the state of the interface at the time that the CC ERROR ACK
primitive was issued by the CCS provider.

cc call ref Identifies the CCS provider or CCS user call reference associated with the re-
quest or response primitive that was in error. If no call reference is associated
with the request or response primitive that caused the error, this field is coded
zero (0) by the CCS provider.

Valid Error Codes

The following error codes are allows to be returned:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

2006-01-02 65

Chapter 4: CCI Primitives

CCBADADDR
The call control address as specified in the primitive was in an incorrect format,
or the address contained illegal information.

CCBADDIGS
The digits provided in the called party number or subsequent number specified
in the primitive are of an incorrect format or are invalid.

CCBADOPT
The options values as specified in the primitive were in an incorrect format, or
they contained illegal information.

CCNOADDR
The CCS provider could not allocate an address.

CCADDRBUSY
The CCS provider could not use the specified address because the specified
address is already in use.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADTOK
Token used is not associated with an open stream.

CCBADFLAG
The flags specified in the primitive were incorrect or illegal.

CCNOTSUPP
Specified primitive type is not known to the CCS provider.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out of
range).

CCACCESS
The user did not have proper permissions.

Valid States

This primitive is valid in all states that have a pending acknowledgement or confirmation.

New State

The new state is the same as the one from which the acknowledged request or response was
issued.

66 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.1.11 Successful Receipt Acknowledgements

CC OK ACK

The primitive indicates to the CCS user that the previous call control user originated
primitive was received successfully by the call control provider. It does not indicate to the
CCS user any call control protocol action taken due to the issuance of the last primitive.
The CC OK ACK primitive may only be initiated as an acknowledgement for those user-
originated primitives that have no other means of confirmation.

Format
The format of the message is one M PCPROTO message block, and its structure is as
follows:

typedef struct CC_ok_ack {

ulong cc_primitive; /* always CC_OK_ACK */

ulong cc_correct_prim; /* primitive being acknowledged */

ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_ok_ack_t;

Parameters

cc primitive
Identifies the primitive.

cc correct prim
Identifies the successfully received primitive type.

cc state Identifies the state of the interface at the time that the CC OK ACK primitive
was issued by the CCS provider.

cc call ref Identifies the CCS provider or CCS user call reference associated with the re-
quest or response primitive that was in error. If no call reference is associated
with the request or response primitive that caused the error, this field is coded
zero (0) by the CCS provider.

Valid States

This primitive is issued in states CCS WACK UREQ and CCS WACK OPTREQ.

New State

The resulting state depends on the current state (see Appendix C [State/Event Tables],
page 279, Tables B-7 and B-8.).

2006-01-02 67

Chapter 4: CCI Primitives

4.2 Primitive Format and Rules

This section describes the format of the UNI (User and Newtork) and NNI primitives and
the rules associated with these primitives. The default values of the options parameters
associated with a call may be selected via the CC OPTMGMT REQ primitive.

4.2.1 Call Setup Phase

The following call control service primitives pertain to the setup of a call, provided the CCS
users exist, and are known to the CCS provider.

4.2.1.1 Call Control Setup Request

CC SETUP REQ

This primitive requests that the CCS provider make a call to the specified destination.

Format
The format of the message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_setup_req {

ulong cc_primitive; /* always CC_SETUP_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */

ulong cc_cdpn_offset; /* called party number offset */

ulong cc_opt_length; /* optional parameters length */

ulong cc_opt_offset; /* optional parameters offset */

ulong cc_addr_length; /* connect to address length */

ulong cc_addr_offset; /* connect to address offset */

} CC_setup_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies a reference number known to the CCS user that uniquely identifies
the current setup request. When this value is non-zero, it permits the CCS
User to have multiple outstanding setup requests pending on the same stream.
Responses made by the CCS provider to the CC SETUP REQ primitive will
contain this CCS user call attempt reference.

cc call type
Specifies the type of call to be set up. Call types supported are dependent upon
the CCS provider and protocol, see the addendum for call types for specific
protocols.

68 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

cc call flags
Specifies a bit field of call options. Call flags supported are depeddent upon
the CCS provider and protocol, see the addendum for call flags for specific
protocols.

cc cdpn length
Specifies the length of the called party number parameter that conveys an
address identifying the CCS user to which the call is to be established. This
field will accommodate variable length numbers within a range supported by
the CCS provider. If no called party address is provided by the CCS user, this
field must be coded to zero. The coding of the called party number is protocol
and provider-specific.

cc cdpn offset
Is the offset of the called party number from the beginning of the M PROTO
message block.

cc opt length
Specifies the length of optional parameters to be conveyed in the call setup.
This field will accomodate variable length addresses within a range supported
by the CCS provider. If no optional parameters are provided by the CCS user,
this field must be coded to zero. The format of optional parameters are protocol
and provider-specific, see the addendum for the format of optional parameters
for specific protocols.

cc opt offset
Specifies the offset of the optional parameters from the beginning of the
M PROTO message block.

cc addr length
Specifies the length of the call control address parameter that conveys the call
control address (circuit, circuit group) of the CCS user entity to which the call
is to be established. The semantics of the values in the CC SETUP REQ is
identical to the values in the CC BIND REQ.

cc addr offset
Specifies the offset of the call control address from the beginning of the
M PROTO message block.

Rules

The following rules apply to the setup of calls to the specified addresses:
• If the cc cdpn length field in the CC SETUP REQ primitive is zero, then the CCS

provider is to select a called party number for the call. If the CCS provider cannot select
a called party number for the call, the CCS provider responds with a CC ERROR ACK
primitive with error CCNOADDR.

• If the cc cdpn length field in the CC SETUP REQ primitive is non-zero, the CCS
provider is to setup the call to the specified number. If the CCS provider cannot
setup a call of the specified call type to the specified number the call will fail and the

2006-01-02 69

Chapter 4: CCI Primitives

CCS provider will return a CC ERROR ACK with the appropriate error value (e.g.,
CCBADADDR).

The following rules apply to the call control addresses (trunk groups and circuit identifiers):
• If the CCS user does not specify a call control address (i.e. cc addr length is set to

zero), then the CCS provider may attempt to assign a call control address, assign it a
call reference and associate it with the stream for the duration of the call.

The following rules apply to the CCS user call attempt reference:
• If the CCS user does not specify a call attempt reference (i.e. the cc user ref is set to

zero), then the CCS provider can only support one outstanding outgoing call attempt
for the stream. If the CCS user specifies a call attempt reference, all replies made
by the CCS provider to this CC SETUP REQ primitive will contain the CCS user
specified call attempt reference until either the call fails or is released, or after the CCS
provider sends a CC SETUP CON primitive.

Valid States

This primitive is valid in state CCS IDLE.

New State

The new state depends upon the information provided in the CC SETUP REQ message as
follows:
• If the setup request specifies that a continuity check was performed on a previous circuit,

the new state is CCS WREQ CCREP (awaiting report of the result of continuity test
performed on the previous circuit).

• If the setup request specifies that a continuity check is required on the circuit, the new
state is CCS WIND CTEST (awaiting indication of remote loop back on the circuit).

• If the setup request specifies that no continuity test is required on this or a previous
circuit and that the called party address contains partial information, the new state is
CCS WIND MORE (awaiting the indication that more information is required).

• If the setup request specifies that no continuity test is required on this or a previous
circuit and that the called party address contains complete information, the new state
is CCS WCON SREQ (awaiting confirmation of the setup request).

Acknowledgements

The following acknowledgements are valid for this primitive:
— Successful Call Establishment : This is indicated via the CC SETUP CON primi-

tive. This results in the Call Establishment state. For CC SETUP REQ primitives
where ISUP NCI CONT CHECK REQUIRED is set, or where the CCS provider oth-
erwise determines that a continuity check is required on the circuit, success is still
indicated via the CC SETUP CON primitive. In this case, the CC SETUP CON
primitive is not sent by the CCS provider unless the continuity check is successful.
For CCS SETUP primitives where ISUP NCI CONT CHECK PREVIOUS is set, the
CC SETUP CON primitive is not sent by the CCS provider until the CCS user sends a

70 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

CC CONT REPORT REQ primitive indicating that continuity check on the previous
circuit has been successful. Receipt of the CC SETUP CON primitive always results
in the Call Establishment state.

— Unsuccessful Call Establishment : This is indicated via the CC CALL REATTEMPT IND,
CC CALL FAILURE IND, or CC RELEASE IND primitives. For example, a call
may be rejected because either the called CCS user cannot be reached, or the CCS
provider and/or the called CCS user did not agree on the specified call type or
options. This results in the Idle state. Where the CC CALL REATTEMPT IND or
CC RELEASE IND primitives are sent before the CC SETUP CON primitive, the
CC CALL REATTEMPT IND or CC RELEASE IND primitives will contain the
CCS user specified call attempt reference.

— Non-fatal errors: These are indicated via the CC ERROR ACK primitive. The appli-
cable non-fatal errors are defined as follows:

CCSYSERR
A system error has occurred and the UNIX system eror is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADADDR
The call control address as specified in the primitive was in an incorrect
format, or the address contained illegal information.

CCBADDIGS
The called party number was in the incorrect format, or contained illegal
information. This is used only to handle coding errors of the number and is
not intended to provide for protocol errors. Protocol errors should be con-
veyed in the CC CALL REATTEMPT IND, CC CALL FAILURE IND
or CC RELEASE IND primitives.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCNOADDR
The user did not provide a called party address field and one was required
by the call type. The CCS provider could not select a called party address.

CCADDRBUSY
The CCS provider could not use the specified address because the specified
address is already in use.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal (not
unique).

2006-01-02 71

Chapter 4: CCI Primitives

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out
of range).

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

72 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.1.2 Call Control Setup Indication

CC SETUP IND

This primitive indicates to the destination CCS user that a call setup request has been
made by the user at the specified source address.

Format
The format of the message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_setup_ind {

ulong cc_primitive; /* always CC_SETUP_IND */

ulong cc_call_ref; /* call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */

ulong cc_cdpn_offset; /* called party number offset */

ulong cc_opt_length; /* optional parameters length */

ulong cc_opt_offset; /* optional parameters offset */

ulong cc_addr_length; /* connecting address length */

ulong cc_addr_offset; /* connecting address offset */

} CC_setup_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Identifies the call reference that can be used by the CCS user to associate this
message with the CC SETUP RES or CC RELEASE REQ primitive that is
to follow. This value must be unique among the outstanding CC SETUP IND
messages.

cc call type
Indicates the type of call to be set up. Call types supported are dependent upon
the CCS provider and protocol, see the addendum for call types for specific
protocols.

cc call flags
Indicates a bit field of call options. Call flags supported are dependent upon
the CCS provider and protocol, see the addendum for call flags for specific
protocols.

cc cdpn length
Indicates the length of the called party number address parameter that conveys
an address identifying the CCS user to which the call is to be established. This
field will accommodate variable length addresses within a range supported by
the CCS provider.

cc cdpn offset
Is the offset of the called party number address from the beginning of the
M PROTO message block.

2006-01-02 73

Chapter 4: CCI Primitives

cc opt length
Indicates the length of the optional parameters that were used in the call setup.

cc opt offset
Indicates the offset of the optional parameters from the beginning of the
M PROTO message block.

cc addr length
Indicates the length of the connecting address parameter that conveys the call
control address the CCS user entity (circuit) on which the call is being estab-
lished. The semantics of the values in the CC SETUP IND is identical to the
values in the CC BIND ACK.

cc addr offset
Indicates the offset of the connecting address from the beginning of the
M PROTO message block.

Valid States

This primitive is valid in state CCS IDLE for the indicated call reference.

New State

The new state depends upon the information provided in the CC SETUP IND message as
follows:
• If the setup indication indicates that a continuity check was performed on a previous

circuit, the new state is CCS WIND CCREP (awaiting the report of continuity test
results).

• If the setup indication indicates that a continuity check is required on the circuit, the
new state is CCS WREQ CTEST (awaiting confirmation of installation of loop back
device on the circuit).

• If the setup indication indicates that no continuity tests are required on this or a
previous circuit and that the called party number contains partial information, the new
state is CCS WREQ MORE (awaiting the request for more information to confirm the
partial address).

• If the setup indication indicates that no continuity tests are required on this or a
previous circuit and that the called party number contains complete information, the
new state is CCS WRES SIND (awaiting response to the setup indication).

In any event, the number of outstanding setup indications waiting for user response is
incremented by one.

Rules

The rules for issuing the CC SETUP IND primitive are as follows:
• This primitive will only be issued to streams that have been bound with a non-zero

negotiated maximum number of setup indications (i.e. on a listening stream), and
where the number of outstanding setup indications (call references) for the stream is
less than the negotiated maximum number of setup indications.

74 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

• If the call setup indicated is for a normal call, the stream upon which it is indicated was
not bound with the CC TEST, CC MANAGEMENT or CC MAINTENANCE flags
set.

• If the call setup indicated is for an ISUP test call, the stream upon which it is indicated
was bound with the CC TEST flag set and a non-zero number of negotiated maximum
setup indications.

2006-01-02 75

Chapter 4: CCI Primitives

4.2.1.3 Call Control Setup Response

CC SETUP RES

This primitive allows the destination CCS user to request that the call control provider
accept a previous setup indication. This primitive also indicates that overlap receiving
is complete. The CCS use is still expected to complete the setup process by issuing the
CCS PROCEED REQ, CCS ALERTING REQ, CCS PROGRESS REQ, CCS IBI REQ,
CCS CONNECT REQ, or CCS DISCONNECT REQ messages.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_setup_res {

ulong cc_primitive; /* always CC_SETUP_RES */

ulong cc_call_ref; /* call reference */

ulong cc_token_value; /* call response token value */

} CC_setup_res_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the CC SETUP RES message. It is used by the
CCS provider to associated the CC SETUP RES message with an outstanding
CC SETUP IND message. An invalid call reference should result in error with
the error type CCBADCLR.

cc token value
Is used to identify the stream that the CCS user wants to establish the call on.
(Its value is determined by the CCS user by issuing a CC BIND REQ primitive
with the CC TOKEN REQUEST flag set. The token value is returned in the
CC BIND ACK.) The value of this field should be non-zero when the CCS
user wants to establish the call on a stream other than the stream on which
the CC SETUP IND arrived. If the CCS user wants to establish a call on the
same stream that the CC SETUP IND arrived on, then the value of this field
should be zero.

Valid States

This primitive is valid in state CCS WRES SIND.

New State

The new state is CCS WREQ PROCEED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:

76 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccesful (Non-fatal errors): Errors are indicated via the CC ERROR ACK primi-

tive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADTOK
The token specified is not associated with an open stream.

CCBADPRIM
The primitive format was incorrect (i.e. too short).

2006-01-02 77

Chapter 4: CCI Primitives

4.2.1.4 Call Control Setup Confirm

CC SETUP CON

This primitive indicates to the calling CCS user that the call control setup request has
been sent on the specified call control address (circuit, circuit group). For calls that
were requested setup with the ISUP NCI CONT CHECK REQUIRED flag set in the
CC SETUP REQ, or for which the CCS provider has otherwise decide to perform con-
tinuity check, this also confirms that the continuity check was successful.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_setup_con {

ulong cc_primitive; /* always CC_SETUP_CON */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* connecting address length */

ulong cc_addr_offset; /* connecting address offset */

} CC_setup_con_t;

Parameters

cc primitive
Indicates the primitives type.

cc user ref
Indicates the CCS user call attempt reference value which was provided by the
CCS user in the CC SETUP REQ message. This permits the CCS user to
associate this CC SETUP CON primitive with the previous CC SETUP REQ
primitive and permits multiple outstanding CC SETUP REQ primitives.

cc call ref Indicates the CCS provider assigned call reference. If the CCS user wishes to
establish more than one simultaneous call on a given stream, the CCS user
must use this CCS provider indicated call reference in subsequent call control
primitives sent to the CCS provider. This permits the CCS provider to associate
a CCS user primitive with one of multiple simultaneous calls associated with a
given stream.

cc addr length
Indicates the length of the connecting address parameter that conveys the call
control address of the CCS user entity (circuit) on which the call is being
established. The semantics of the values in the CC SETUP CON is identical
to the values in the CC BIND REQ.

cc addr offset
Indicates the offset of the connecting address from the beginning of the
M PROTO message block.

Valid States

This primitive is valid in state CCS WCON SREQ and state CCS WREQ CCREP.

78 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

New State

The new state depends on whether an end-of-pulsing signal was present in the called party
number in the associated CC SETUP REQ primitive. If an ST signal was present, the
new state is CCS WREQ PROCEED, otherwise the new state is CCS WREQ MORE. In
either case, the call enters the Call Establishment Phase.

2006-01-02 79

Chapter 4: CCI Primitives

4.2.1.5 Call Control Reattempt Indication

CC CALL REATTEMPT IND

This primitive indicates to the calling CCS user that the selected address (circuit) is un-
available and that a reattempt should be made on a new call control address (circuit).

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_call_reattempt_ind {

ulong cc_primitive; /* always CC_CALL_REATTEMPT_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_reason; /* reason for reattempt */

} CC_call_reattempt_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc user ref
Indicates the CCS user call attempt reference value which was provided
by the CCS user in the CC SETUP REQ message. This permits the CCS
user to associate this CC CALL REATTEMPT IND primitive with the
previous CC SETUP REQ primitive and permits multiple outstanding
CC SETUP REQ primitives.

cc reason Indicates the cause of the reattempt. the cc reason field is protocol and imple-
mentation specific. See the Addendum for protocol-specific values.

Valid Modes

This primitive is only valid in NNI mode.

Valid States

This primitive is valid in states CCS WCON SREQ, CCS WREQ CCREP,
CCS WIND MORE, CCS WREQ INFO and CCS WIND PROCEED.

New State

The new state is CCS IDLE.

Rules

• The CC CALL REATTEMPT IND indicates that call repeat attempt should be made
by the CCS user, and the reason for the reattempt.

• If the CC CALL REATTEMPT IND is issued before the CC SETUP CON primi-
tive, the user reference value will be the same value as appeared in the corresponding
CC SETUP REQ primitive, and the call reference value will be zero.

80 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

• If the CC CALL ATTEMPT IND primitive is issued subsequent to the
CC SETUP CON primitive, the user reference value will be zero, and the call
reference value will be the same as appeared in the corresponding CC SETUP CON
primitive.

2006-01-02 81

Chapter 4: CCI Primitives

4.2.2 Continuity Check Phase

The following call control service primitives pertain to the continuity check phase of a call.

4.2.2.1 Call Control Continuity Check Request

CC CONT CHECK REQ

This primitive requests that the CCS provider perform a continuity check procedure.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_check_req {

ulong cc_primitive; /* always CC_CONT_CHECK_REQ */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_check_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc addr length
Specifies the length of the call control address (circuit identifier) upon which
the CCS user is requesting a continuity check.

cc addr offset
Specifies the offset of the call control address from the beginning of the
M PROTO message block.

Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

• If the CCS user does not specify a call control address (i.e, cc addr length is set to
zero), then the CCS provider may attempt to assign a call control address and associate
it with the stream for the duration of the continuitu test procedure. This can be useful
for automated continuity testing.

Valid Modes

This primitive is only valid in the NNI mode.

Valid States

This primitive is valid in state CCS IDLE for the selected circuit.

New State

The new state is CKS WIND CTEST for the selected address.

82 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC CONT TEST IND primi-

tive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCNOADDR
The call control address was not provided (cc addr length coded zero).

CCBADADDR
The call control address contained in the primitive were poorly formatted
or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
address was provided in the call control address or the address was issued
to a UNI CCS provider.

CCACCESS
The user did not have sufficient permission to perform the operation on
the specified call control addresses.

2006-01-02 83

Chapter 4: CCI Primitives

4.2.2.2 Call Control Continuity Check Indication

CC CONT CHECK IND

This primitive indicates to the CCS user that a continuity check is being requested by
the CCS user peer on the specified call control address(es) (signalling interface and circuit
identifiers). Upon receipt of this primitive, the CCS user should establish a loop back device
on the specified channel and issues the CC CONT TEST REQ primitive confirming the
loop back. The CCS user should then wait for the CC CONT REPORT IND indicating
the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call con-
trol addresses or to a stream bound as a default listener in the same manner as the
CC SETUP IND. (A continuity test indication is treated as a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC BIND REQ
primitive with flag CC TEST set and a non-zero number of setup indications was provided
in the CC BIND REQ and returned in the CC BIND ACK.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_check_ind {

ulong cc_primitive; /* always CC_CONT_CHECK_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_check_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Identifies the call reference that can be used by the CCS user to associate
this message with the CC CONT TEST REQ or CC RELEASE REQ prim-
itive that is to follow. This value must be unique among the outstanding
CC CONT CHECK IND messages.

cc addr length
Indicates the length of the call control address (circuit identifier) upon which a
continuity check is indicated.

cc addr offset
Indicates the offset of the requesting address from the beginning of the
M PROTO message block.

Valid Modes

This primitive is only valid for addresses in the NNI mode.

84 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Valid States

This primitive is valid in state CCS IDLE for the specified addresses.

New State

The new state is CKS WREQ CTEST for the specified addresses.

2006-01-02 85

Chapter 4: CCI Primitives

4.2.2.3 Call Control Continuity Test Request

CC CONT TEST REQ

This message is used either to respond to a CC SETUP IND primitive which contains the
ISUP NCI CONT CHECK REQUIRED flag, or to respond to a CC CONT CHECK IND
primitive. Before responding to either primitive, the CCS User should install a loop back
device on the requested channel and then respond with this response primitive to confirm
the loop back.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_test_req {

ulong cc_primitive; /* always CC_CONT_TEST_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the CC CONT TEST REQ message. It is used
by the CCS provider to associate the CC CONT TEST REQ message with an
outstanding CC SETUP IND message. An invalid call reference should result
in error with the error type CCBADCLR.

cc token value
Is used to identify the stream that the CCS user wants to establish the con-
tinuity check call on. (Its value is determined by the CCS user by issuing a
CC BIND REQ primitive with the CC TOKEN REQUEST flag set. The to-
ken value is returned in the CC BIND ACK.) The value of this field should be
non-zero when the CCS user wants to establish the call on a stream other than
the stream on which the CC CONT CHECK IND arrived. If the CCS user
wants to establish a call on the same stream that the CC CONT CHECK IND
arrived on, then the value of this field should be zero.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CKS WREQ CTEST.

New State

The new state is CKS WIND CCREP.

86 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC CONT REPORT IND

in the case that the primitive was issued in response to a CC SETUP IND, or
CC RELEASE IND primitive in the case that the primitive was issued in response to
the CC CONT CHECK IND primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC CONT REPORT IND
primitive.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCACCESS
The user did not have proper permissions for the operation.

CCNOTSUPP
The CCS provider does not support the operation.

2006-01-02 87

Chapter 4: CCI Primitives

4.2.2.4 Call Control Continuity Test Indication

CC CONT TEST IND

This message confirms to the testing CCS user that a loop back device has been (or will be)
installed on the specified call control address (circuit). Upon receiving this message, the
testing CCS user should connect tone generation and detection equipment to the specified
circuit, perform the continuity test and issue a report using the CC CONT REPORT REQ
primitive.
This primitive will only be issued to streams successfully bound with the CC BIND REQ
primitive with a non-zero number of setup indications and the CC TEST bind flag set.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_test_ind {

ulong cc_primitive; /* always CC_CONT_TEST_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_test_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference associated with the continuity check call for the
specified call control address (circuit identifier).

cc addr length
Indicates the length of the call control address (signalling interface and cir-
cuit identifier) upon which a continuity check is confirmed. The semantics
of the values in the CC CONT TEST IND is identical to the values in the
CC BIND REQ.

cc addr offset
Indicates the offset of the connecting address from the beginning of the
M PROTO message block.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WCON CREQ.

New State

The new state is CCS WAIT COR.

88 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.2.5 Call Control Continuity Report Request

CC CONT REPORT REQ

This primitive requests that the CCS provider indicate to the called CCS user that the
continuity check succeeded or failed. The CCS user should remove any continuity test tone
generator/detection device from the circuit and verify silent code loop back before issuing
this primitive.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_report_req {

ulong cc_primitive; /* always CC_CONT_REPORT_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies the CCS user reference of the associated CC SETUP REQ primitive.
This value is non-zero when the CC CONT REPORT REQ primitive is
issued subsequent to a CC SETUP REQ primitive which had the flag
ISUP NCI CONTINUITY CHECK PREVIOUS set to indicate the result of
the continuity check on the previous circuit. Otherwise, this value is coded
zero.

cc call ref Specifies the call reference of the associated CC CONT TEST IND
primitive for the continuity check call. This value is non-zero when
the CC CONT REPORT REQ primitive is issued in response to a
CC CONT TEST IND primitive. Otherwise, this value is coded zero.

cc result Specifies the result of the continuity test, whether success or failure. The value
of the cc result is protocol specific. For values representing success and values
representing failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WREQ CCREP.

New State

When issued in response to the CC CONT TEST IND primitive, the new state is
CCS IDLE. When issued subsequent to a CC SETUP REQ primitive, the new state is

2006-01-02 89

Chapter 4: CCI Primitives

either CCS WREQ MORE or CCS WREQ PROCEED, depending upon whether the
sent address contain an ST pulse.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADPRIM
The primitive format was incorrect.

90 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.2.6 Call Control Continuity Report Indication

CC CONT REPORT IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed.
The called CCS user can remove the loop back or tone generation/detection devices from
the circuit and the call either moves to the idle state or a call setup state.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_report_ind {

ulong cc_primitive; /* always CC_CONT_REPORT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference associated with the continuity check report as it
appeared in the associated CC CONT CHECK IND primitive.

cc result Indicates the result of the continuity test, whether success or failure. The value
of the cc result is protocol specific. For values representing success and values
representing failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WREQ CTEST or CCS WIND CCREP.

New State

If the primitive is issued subsequent to the CC SETUP REQ, the new state is
CCS WCON SREQ. If the primitive is issued in response to the CC CONT TEST IND
primitive, the new state is CCS IDLE.

2006-01-02 91

Chapter 4: CCI Primitives

4.2.3 Collecting Information Phase

The following call control service primitive pertain to the collecting information phase of
a call. During this phase requests for more information are issued and indicated, and
additional information is provided.

4.2.3.1 Call Control More Information Request

CC MORE INFO REQ

This message request more information (digits in the called party address, or optional
parameters) from the calling CCS user. This specifies to the CCS provider that overlap
receiving is in effect and the number of digits received are not sufficient to complete the
call.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_more_info_req {

ulong cc_primitive; /* always CC_MORE_INFO_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference for the CC MORE INFO REQ message. It is used
by the CCS provider to associated the CC MORE INFO REQ message with
an previous CC SETUP IND message and identify the incoming call.

cc opt length
Indicates the length of the optional parameters associated with the nore infor-
mation request.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User and Network) mode and for compatibility in NNI mode.

Valid States

This primitive is valid in state CCS WREQ MORE.

New State

The new state is CCS WIND INFO.

92 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC INFORMATION IND and

CC INFO TIMEOUT IND primitives.
— Unsuccessful : Unsuccessful completion is indicated by the CC CALL FAILURE IND

primitive with a protocol specific reason indicating that additional information was not
provided within a sufficient period of time.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCNOTSUPP
The CCS provider does not support the operation.

CCACCESS
The user did not have proper permissions for the operation.

CCBADPRIM
The primitive was incorrectly formatted (i.e. the M PROTO message block
was too short).

2006-01-02 93

Chapter 4: CCI Primitives

4.2.3.2 Call Control More Information Indication

CC MORE INFO IND

This message indicates that the calling CCS user needs to provide additional information
(called party address digits) to complete call processing. The CCS user should generate
CC INFORMATION REQ primitives, if possible. This is also an indication that overlap
receiving is in effect. Appropriate protocol timers will be started.
In contrast to the the CC INFORMATION REQ primitive(s) which are sent by the CCS
user in response to this message, the CC MORE INFO IND message is normally only issued
once per call setup.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_more_info_ind {

ulong cc_primitive; /* always CC_MORE_INFO_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc user ref
Indicates the user call reference of the CC MORE INFO IND message. It is
used by the CCS user to associate the CC MORE INFO IND message with an
outstanding CC SETUP REQ message.

cc opt length
Indicates the length of the optional parameters associated with the more infor-
mation indication. If no optional parameters are associated with the more in-
formation indications, this parameter must be coded zero by the CCS provider.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (Network and User) mode, and for compatibility in NNI
mode.

Valid States

This primitive is valid in state CCS WIND MORE.

New State

The new state is CCS WREQ INFO.

94 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.3.3 Call Control Information Request

CC INFORMATION REQ

This message request that the CCS provider include the subsequent number information
in addition to the called party number information previously supplied with a
CC SETUP REQ primitive.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_information_req {

ulong cc_primitive; /* always CC_INFORMATION_REQ */

ulong cc_user_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */

ulong cc_subn_offset; /* subsequent number offset */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies the user call reference. It is used by the CCS user to associate the
message with an outstanding CC SETUP REQ message.

cc subn length
Specifies the length of the subsequent called party address parameter that con-
veys more of an address identifying the CCS user to which the call is to be
established. This field will accommodate variable length addresses within a
range supported by the CCS provider. If no subsequent called party address is
provided by the CCS user, this field must be coded to zero. The coding of the
subsequent called party address is protocol and provider-specific.

cc subn offset
Is the offset of the subsequent called party address from the beginning of the
M PROTO message block.

cc opt length
Specifies the length of the optional parameters associated with the alerting
indication.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (both User and Network) and NNI.

2006-01-02 95

Chapter 4: CCI Primitives

Valid States

This primitive is valid in state CCS WIND MORE and CCS WREQ INFO.

New State

The new state is CCS WIND MORE if the subsequent number still does not contain com-
plete address information or CCS WIND PROCEED if it does.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCNOADDR
The user did not provide a subsequent called party address field and one
was required by the call type. The CCS provider could not select a called
party address.

CCSYSERR
A system error has occurred and the UNIX system eror is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The specified call reference was invalid.

CCBADADDR
The subsequent called party address was in the incorrect format,
or contained illegal information. This is used only to handle coding
errors of the address and is not intended to provide for protocol errors.
Protocol errors should be conveyed in the CC CALL FAILURE IND or
CC RELEASE IND primitives.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

96 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.3.4 Call Control Information Indication

CC INFORMATION IND

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_information_ind {

ulong cc_primitive; /* always CC_INFORMATION_IND */

ulong cc_call_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */

ulong cc_subn_offset; /* subsequent number offset */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_information_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the message. It is used by the CCS provider to
associated the message with an preceding CC SETUP IND message.

cc subn length
Indicates the length of the subsequent called party address parameter that
conveys more of an address identifying the CCS user to which the call is to
be established. This field will accommodate variable length addresses within a
range supported by the CCS provider. If no subsequent called party address is
provided by the CCS user, this field must be coded to zero. The coding of the
subsequent called party address is protocol and provider-specific.

cc subn offset
Is the offset of the subsequent called party address from the beginning of the
M PROTO message block.

cc opt length
Indicates the length of the optional parameters associated with the alerting
indication.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (both User and Network) and NNI.

Valid States

This primitive is valid in state CCS WREQ MORE or CCS WIND INFO.

2006-01-02 97

Chapter 4: CCI Primitives

New State

The new state is CCS WREQ MORE if more information is still pending, or
CCS WREQ PROCEED if the information is complete.

98 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.3.5 Call Control Information Timeout Indication

CC INFO TIMEOUT IND

This message indicates that a timeout has occurred while waiting for additional digits. It
is up to the CCS user to decide whether the digits collected are sufficient, in which case the
call can proceed; or, to decide that the digits collected are insufficient and begin tearing
down the call with a CC DISCONNECT REQ or CC RELEASE REQ with cause value
CC CAUS ADDRESS INCOMPLETE.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_info_timeout_ind {

ulong cc_primitive; /* always CC_INFO_TIMEOUT_IND */

ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the CC SETUP IND when the
CC INFO TIMEOUT IND primitive is used in response to the
CC SETUP IND on a listening stream. Otherwise, this parameter is coded
zero and is ignored by the CCS provider.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid State

This primitive is valid in state CCS WIND INFO or CCS WREQ INFO.

New State

The new state is unchanged.

2006-01-02 99

Chapter 4: CCI Primitives

4.2.4 Call Establishment Phase

The following call control service primitives pertain to the establishment of a call.

4.2.4.1 Call Control Proceeding Request

CC PROCEEDING REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call
is proceeding towards the called CCS user. This also means that there is sufficient called
party address information to complete the call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_proceeding_req {

ulong cc_primitive; /* always CC_PROCEEDING_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference for the request. The call reference is used by the
CCS provider to identify the call.

cc flags Specifies proceeding flags associated with the proceeding request. Proceeding
flags are protocol specific (see the Addendum).

cc opt length
Specifies the length of the optional parameters associated with the alerting
indication.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primitive is valid in state CCS ICC WAIT ACM.

New State

The new state is CCS WREQ MORE or CCS WIND PROCEED.

100 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The specified flags were incorrect or unsupported.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

2006-01-02 101

Chapter 4: CCI Primitives

4.2.4.2 Call Control Proceeding Indication

CC PROCEEDING IND

This primitive indicates to the calling CCS user that the call is proceeding to the called CCS
user. This also means that there is sufficient called party address information to complete
the call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_proceeding_ind {

ulong cc_primitive; /* always CC_PROCEEDING_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. It is used by the CCS provider to indicate the call.

cc flags Indicates the proceeding flags associated with the proceeding indication. Pro-
ceeding flags are protocol specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the proceeding
indication.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primitive is valid in state CCS WREQ MORE or CCS WIND PROCEED.

New State

The new state is CCS WIND ALERTING.

102 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.3 Call Control Alerting Request

CC ALERTING REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the
called CCS user is being alerted.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_alerting_req {

ulong cc_primitive; /* always CC_ALERTING_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. It is used by the CCS provider to identify the call.

cc flags Specifies the alerting flags associated with the alerting request. Alerting flags
are protocol specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the alerting
indication.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primiitve is valid in states CCS WREQ MORE, CCS WREQ PROCEED and
CCS WREQ ALERTING states.

New State

The new state is CCS WREQ PROGRESS.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:

2006-01-02 103

Chapter 4: CCI Primitives

— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The specified flags contained incorrect or unsupported information.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

104 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.4 Call Control Alerting Indication

CC ALERTING IND

This primitive indicates to the calling CCS user that the called CCS user is being alerted.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_alerting_ind {

ulong cc_primitive; /* always CC_ALERTING_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Indicates the alerting flags.

cc opt length
Indicates the length of the optional parameters associated with the alerting
indication. If no optional parameters are associated with the alerting indication,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primitive is valid in states CCS WREQ MORE, CCS WIND PROCEED and
CCS WIND ALERTING.

New State

The new state is CCS WIND PROGRESS.

2006-01-02 105

Chapter 4: CCI Primitives

4.2.4.5 Call Control Progress Request

CC PROGRESS REQ

This primitive requests that the CCS provider indicate to the calling CCS user that the call
is progressing towards the called CCS user, with the specified event.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_progress_req {

ulong cc_primitive; /* always CC_PROGRESS_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc event Specifies the progress event. Progress events are protocol specific (see Adden-
dum).

cc flags Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the progress
request. If no optional parameters are associated with the progress request,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primitive is valid in states CCS WREQ PROGRESS.

New State

The new state is CCS WREQ PROGRESS.

106 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The specified flags contained incorrect or unsupported information.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

2006-01-02 107

Chapter 4: CCI Primitives

4.2.4.6 Call Control Progress Indication

CC PROGRESS IND

This primitive indicates to the calling CCS user that the call is progressing towards the
called CCS user with the specified progress event.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_progress_ind {

ulong cc_primitive; /* always CC_PROGRESS_IND */

ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc event Indicates the progress event. Progress events are protocol specific (see Adden-
dum).

cc flags Indicates progress flags. Progress flags are protocol specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the progress
request. If no optional parameters are associated with the progress request,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (User or Network) or NNI mode.

Valid States

This primitive is valid instates CCS WIND PROGRESS.

New State

The new state is CCS WIND PROGRESS.

108 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.7 Call Control In-Band Information Request

CC IBI REQ

This primitive request that the CCS provider indicate to the calling CCS user that the
in-band information is now available.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_ibi_req {

ulong cc_primitive; /* always CC_IBI_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Specifies the flags associated with the primitive. In band information flags are
protocol specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the in-band
information request. If no optional parameters are associated with the in band
information request, then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility
with the NNI.

Valid States

This primitive is valid in states CCS WREQ MORE, CCS WREQ PROCEED,
CCS WREQ ALERTING, CCS WREQ PROGRESS and CCS WREQ CONNECT.

New State

The new state is CCS WREQ CONNECT.

2006-01-02 109

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The specified flags contained incorrect or unsupported information.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

110 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.8 Call Control In-Band Information Indication

CC IBI IND

This primitive indicates to the calling CCS user that there is in-band information now
available in the voice channel.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_ibi_ind {

ulong cc_primitive; /* always CC_IBI_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Indicates the flags associated with the primitive. In band information flags are
provider and protocol specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the in-band
information indication. If no optional parameters are associated with the in
band information request, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in NNI mode and in UNI (User and Network) mode for compatibility
with the NNI.

Valid States

This primitive is valid in states CCS WIND MORE, CCS WIND PROCEED,
CCS WIND ALERTING and CCS WIND PROGRESS.

New State

The new state is CCS WIND CONNECT.

2006-01-02 111

Chapter 4: CCI Primitives

4.2.4.9 Call Control Connect Request

CC CONNECT REQ

This primitive requests that the CCS provide indicate to the remote CCS user that the call
control setup has complete and the called CCS use is connected on the call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_connect_req {

ulong cc_primitive; /* always CC_CONNECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call. The call reference is the same value which was indicated in
the corresponding CC SETUP IND primitive for the incoming call.

cc flags Specifies the connect flags associated with the primitive. Connect flags are
protocol specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the connect
request. If no optional parameters are associated with the connect request,
then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in NNI mode and in UNI (User) mode.

Valid States

This primitive is only valid for incoming calls in the CCS WREQ MORE,
CCS WREQ PROCEED, CCS WREQ ALERTING, CCS WREQ PROGRESS,
CCS WREQ CONNECT states.

New State

The new state is CCS WIND SCOMP (waiting for indication of setup complete).

112 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC SETUP COMPLETE IND

primitive.
— Unsuccessful : Unsuccessful completion is indicated via the CC CALL FAILURE IND,

CC DISCONNECT IND or CC RELEASE IND primitives.
— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-

plicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADFLAG
The specified flags contained incorrect or unsupported information.

CCBADOPT
The optional parameters were in an incorrect format, or contained illegal
information.

CCACCESS
The user did not have proper permissions for the use of the requested
address or options.

CCBADPRIM
The primitive is of an incorrect format or an offset exceeds the size of the
M PROTO block.

2006-01-02 113

Chapter 4: CCI Primitives

4.2.4.10 Call Control Connect Indication

CC CONNECT IND

This primitive indicates that the called CCS user has connected to the call. Upon receving
this primitive the CCS user operating in UNI (Network) mode should connect the calling
CCS user to the call and acknowledge connection of the calling CCS user by responding
with the CC SETUP COMPLETE REQ primitive.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_connect_ind {

ulong cc_primitive; /* always CC_CONNECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call. The call reference is the same value which was indicated in
the corresponding CC SETUP CON primitive for the outgoing call.

cc flags Indicates the connect flags associated with the primitive. Connect flags are
protocol specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the connect
indication. If no optional parameters are associated with the connect indication,
then this parameter is coded zero by the CCS provider.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in NNI mode and in UNI (Network) mode.

Valid States

This primitive is valid in state CCS WIND SCOMP.

New State

The new state is CCS CONNECTED.

114 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.11 Call Control Setup Complete Request

CC SETUP COMPLETE REQ

This primitive request that the CCS provider indicate to the remote CCS user that the
call control setup has completed (the calling CCS user is connected) by the requesting CCS
user. It is used in response to the CC CONNECT IND primitive.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_setup_complete_req {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Specifies the length of the optional parameters associated with the setup com-
plete request. If no optional parameters are associated with the setup complete
request, then this parameter must be coded zero. The CCS provider may in-
clude additional protocol-specific optional parameters.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI mode (Network only) and NNI mode for compatibility.

Valid States

This primitive is valid in state CCS WREQ SCOMP.

For compatibility between NNI mode and UNI Network mode, the CCS provider in
NNI mode should acknowledge this primitive with a CC OK ACK if it is issued in the
CCS CONNECTED state.

New State

The new state is CCS CONNECTED.

2006-01-02 115

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out
of range).

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

116 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.4.12 Call Control Setup Complete Indication

CC SETUP COMPLETE IND

This primitive indicates to the called CCS user, operating in UNI (User) mode, that the
call control setup was completed (the call is answered and connected) by the calling CCS
user. In UNI (User) mode, the CCS user may defer connecting the receive path to the called
CCS user until this message is received. In response to this primitive, the CCS user should
connect the receive path to the called CCS user and consider the call connected.
CCS users operating in UNI (Network) mode or NNI mode should ignore this primitive if
issued by the CCS provider.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_setup_complete_ind {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_IND */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_ind_t;

Parameters

cc primitive
Indicates the primitives type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Indicates the length of the optional parameters associated with the setup com-
plete indication. If no optional parameters were associated with the setup com-
plete indication, then this parameter must be coded zero. The CCS provider
may include additional optional protocol-specific optional parameters.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User only) mode.

Valid States

This primitive is valid in states CCS WIND SCOMP and CCS CONNECTED.

New State

The new state is CCS CONNECTED.

2006-01-02 117

Chapter 4: CCI Primitives

4.2.5 Call Established Phase

The following call control service primitives pertain to the Established phase of a call.

4.2.5.1 Forward Transfer Request

CC FORWXFER REQ

This message requests that the CCS provider forward transfer an established call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_forwxfer_req {

ulong cc_primitive; /* always CC_FORWXFER_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Specifies the length of the optional parameters associated with the forward
transfer request. If no optional parameters were associated with the forward
transfer request, then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is only valid in NNI mode.

Valid States

This primitive is valid in state CCS CONNECTED.

New State

The new state is CCS CONNECTED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:

118 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-

plicable non-fatal errors are defined as follows:

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 119

Chapter 4: CCI Primitives

4.2.5.2 Forward Transfer Indication

CC FORWXFER IND

This primitive indicates to the CCS user that the peer CCS user has requested a forward
transfer of an established call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_forwxfer_ind {

ulong cc_primitive; /* always CC_FORWXFER_IND */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Specifies the length of the optional parameters associated with the forward
transfer indication. If no optional parameters were associated with the forward
transfer indication, then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in NNI mode only.

Valid States

This primitive is valid in state CCS CONNECTED.

New State

The new state is CCS CONNECTED.

120 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.3 Call Control Suspend Request

CC SUSPEND REQ

This message requests that the CCS provider suspend an established call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_req {

ulong cc_primitive; /* always CC_SUSPEND_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Specifies the suspend flags associated with the suspend request. Suspend flags
specify whether the request is for a user suspend or a network suspend. Suspend
flags are provider and protocol specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the suspend
request. If no optional parameters were associated with the suspend request,
then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in mode UNI (User) and NNI.

Valid States

This primitive is valid in state CCS CONNECTED.

New State

The new state is CCS SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:

2006-01-02 121

Chapter 4: CCI Primitives

— Successful : Successful completion is indicated via the CC SUSPEND CON primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC SUSPEND REJECT IND
or CC RELEASE IND primitive. The cause value in the CC SUSPEND REJECT IND
or CC RELEASE IND primitive indicates the cause of failure.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

122 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.4 Call Control Suspend Indication

CC SUSPEND IND

This message indicates to the CCS user that the peer CCS user has requested the suspension
of an establisehd call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_ind {

ulong cc_primitive; /* always CC_SUSPEND_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Indicates the options associated with the suspend. Suspend flags are mode and
protocol dependent, see the addendum. Indicates the suspend flags associated
with the suspend indication. Suspend flags indicate whether the request is for
a user suspend or a network suspend. Suspend flags are provider and protocol
specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the suspend indi-
cation. If no optional parameters were associated with the suspend indication,
then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in mode UNI (Network) and NNI.

Valid States

This primitive is valid in state CCS CONNECTED or CCS SUSPENDED.

New State

The new state is CCS WRES SUSIND for UNI and CCS SUSPENDED for NNI.

2006-01-02 123

Chapter 4: CCI Primitives

4.2.5.5 Call Control Suspend Response

CC SUSPEND RES

This message requests that the CCS provider accept a previous suspend indication.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_res {

ulong cc_primitive; /* always CC_SUSPEND_RES */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Specifies the length of the optional parameters associated with the suspend
response. If no optional parameters were associated with the suspend response,
then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in mode UNI (Network).

Valid States

This primitive is valid in state CCS WRES SUSIND.

New State

The new state is CCS SUSPENDED.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

124 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 125

Chapter 4: CCI Primitives

4.2.5.6 Call Control Suspend Confirmation

CC SUSPEND CON

This message indicates to the CCS user that the CCS provider has confirmed the CCS user
request to suspend an established call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_con {

ulong cc_primitive; /* always CC_SUSPEND_CON */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Indicates the length of the optional parameters associated with the suspend in-
dication. If no optional parameters were associated with the suspend indication,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in mode UNI (User).

Valid States

This primitive is valid in state CCS WCON SUSREQ.

New State

The new state is CCS SUSPENDED.

126 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.7 Call Control Suspend Reject Request

CC SUSPEND REJECT REQ

This message request that the CCS provider reject a previous suspend indication with the
specified cause.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_reject_req {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS user to
identify the call. Its value should be the same as the value returned by the CCS
provider in the CC SETUP IND or CC SETUP CON primitive.

cc cause Indicates the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the suspend
reject request. If no optional parameters are associated with the suspend reject
request, then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the suspend reject
request, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (Network).

Valid States

This primitive is valid in state CCS WRES SUSIND.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

2006-01-02 127

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

128 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.8 Call Control Suspend Reject Confirmation

CC SUSPEND REJECT IND

This message indicates to the requesting CCS user that a previous suspend request for an
established call was rejected and the cause for rejection.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_suspend_reject_ind {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc cause Indicates the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the suspend
reject indication. If no optional parameters are associated with the suspend
reject indication, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the suspend reject
indication, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (User).

Valid States

This primitive is valid in state CCS WCON SUSREQ.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

2006-01-02 129

Chapter 4: CCI Primitives

4.2.5.9 Call Control Resume Request

CC RESUME REQ

This message requests that the CCS provider resume a previously suspended call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_req {

ulong cc_primitive; /* always CC_RESUME_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS user to identify
the call to the CCS provider. The value should be the same as the value indi-
cated by the CCS provider in a previous CC SETUP IND or CC SETUP CON
primitive.

cc flags Specifies the options associated with the resume. Resume flags are provider
and protocol dependent (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the resume re-
quest. If no optional parameters are associated with the resume request, then
this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the resume request,
then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (User) and NNI.

Valid States

This primitive is valid in state CCS SUSPENDED.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

130 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

2006-01-02 131

Chapter 4: CCI Primitives

4.2.5.10 Call Control Resume Indication

CC RESUME IND

This message indicates to the CCS user that the peer CCS user has requested that a
previously suspended call be resumed.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_ind {

ulong cc_primitive; /* always CC_RESUME_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc flags Indicates the options associated with the resume. Resume flags are mode and
protocol dependent, see the addendum.

cc opt length
Indicates the length of the optional parameters associated with the resume
indication. If no optional parameters are associated with the resume indication,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the resume indi-
cation, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (Network) and NNI.

Valid States

This primitive is valid in state CCS SUSPENDED.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or in another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

132 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.11 Call Control Resume Response

CC RESUME RES

This message requests that the CCS provider accept a previous request to resume a sus-
pended call.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_res {

ulong cc_primitive; /* always CC_RESUME_RES */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS user to
identify the call to the CCS provider. Its value should be the same as the value
indicated by a previous CC SETUP IND or CC SETUP CON primitive for
the call.

cc opt length
Specifies the length of the optional parameters associated with the resume re-
sponse. If no optional parameters are associated with the resume response, then
this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the resume re-
sponse, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (Network) and for compatibility in NNI mode.

Valid States

This primitive is valid in state CCS WRES SUSIND.
For compatibility with UNI, NNI should ignore, yet positively acknowledge, this primitive
if received in the CCS CONNECTED or CCS SUSPENDED states where the all is not
suspended in the sense confirmed.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

2006-01-02 133

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

134 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.5.12 Call Control Resume Confirmation

CC RESUME CON

This message indicates to the requesting CCS user that a previous request to resume a
suspended call has been confirmed.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_con {

ulong cc_primitive; /* always CC_RESUME_CON */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc opt length
Indicates the length of the optional parameters associated with the resume
confirmation. If no optional parameters are associated with the resume confir-
mation, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameter are associated with the resume confir-
mation, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (User).

Valid States

This primitive is valid in state CCS WCON SUSREQ.

New State

The new state is CCS CONNECTED if the call is not still suspended in the opposite
direction or another sense (network or user), otherwise the new state remains
CCS SUSPENDED.

2006-01-02 135

Chapter 4: CCI Primitives

4.2.5.13 Call Control Resume Reject Request

CC RESUME REJECT REQ

This message requests that the CCS provider reject a previous requst to resume a suspended
call with the specified cause.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_reject_req {

ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference. The call reference is used by the CCS user to
identify the call to the CCS provider. Its value should be the same as the value
indicated in a previous CC SETUP IND or CC SETUP CON primitive by the
CCS provider for the call.

cc cause Indicates the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the resume reject
request. If no optional parameters are associated with the resume reject request,
then this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameters are associated with the resume reject
request, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (Network).

Valid States

This primitive is valid in state CCS WRES SUSIND.

New State

The new state is CCS SUSPENDED.

136 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

2006-01-02 137

Chapter 4: CCI Primitives

4.2.5.14 Call Control Resume Reject Indication

CC RESUME REJECT IND

This message indicates to the requesting CCS user that a previous request to resume a
suspended call has been rejected and the cause for rejection.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_resume_reject_ind {

ulong cc_primitive; /* always CC_RESUME_REJECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc cause Indicates the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the resume
reject indication. If no optional parameters are associated with the resume
reject indication, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameters are associated with the resume reject
indication, then this parameter must be coded zero.

Valid Modes

This primitive is valid in mode UNI (User).

Valid States

This primitive is valid in state CCS WCON SUSREQ.

New State

The new state is CCS SUSPENDED.

138 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6 Call Termination Phase

The following call control service primitives pertain to the Termination phase of a call.

4.2.6.1 Call Control Reject Request

CC REJECT REQ

This message is used to reject a call before any request for more information, or request
for indication of proceeding, alerting, progress, or in-band information has been attempted.
The message also includes the cause of the rejection.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reject_req {

ulong cc_primitive; /* always CC_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc call ref Specifies the call reference of the CC SETUP IND when the
CC REJECT REQ primitive is used in response to the CC SETUP IND on a
listening stream. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc cause Specifies the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Specifies the length of the optional parameters associated with the reject re-
quest. If no optional parameters are associated with the reject request, then
this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameters are associated with the reject request,
then this parameter must be coded zero.

Valid Modes

This primitive is only valid in the UNI mode (User or Network). (NNI users should use the
CC RELEASE REQ primitive in the same situation.)

Valid State

This primitive is valid in state CCS WRES SIND.

2006-01-02 139

Chapter 4: CCI Primitives

New State

The new state is CCS IDLE.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

140 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6.2 Call Control Reject Indication

CC REJECT IND

This message indicates to the CCS user that a previous setup request has been rejected by
the peer CCS user and indicates the cause of the rejection.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reject_ind {

ulong cc_primitive; /* always CC_REJECT_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc user ref
Indicates the CCS user reference of the associated CC SETUP REQ primitive
that was rejected.

cc cause Indicates the cause for the rejection. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the reject in-
dication. If no optional parameters are associated with the reject indication,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameters are associated with the reject indica-
tion, then this parameter must be coded zero.

Valid Modes

This primitive is only valid in the UNI mode (User or Network).

Valid State

This primitive is valid in state CCS WCON SREQ.

New State

The new state is CCS IDLE.

2006-01-02 141

Chapter 4: CCI Primitives

4.2.6.3 Call Control Call Failure Indication

CC CALL FAILURE IND

This primitive indicates to the CCS user that the call on the selected address (circuit, circuit
group) has failed.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_call_failure_ind {

ulong cc_primitive; /* always CC_CALL_FAILURE_IND */

ulong cc_call_ref; /* call reference */

ulong cc_reason; /* reason for failure */

ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc reason Indicates the reason for the failure. Reasons are provider and protocol specific
(see Addendum).

cc cause Indicates the cause value for the failure. Cause values are provider and protocol
specific (see Addendum).

cc opt length
Indicates the length of the optional parameters associated with the call fail-
ure indication. If no optional parameters are associated with the call failure
indication, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block. If no optional parameters are associated with the call failure
indication, then this parameter must be coded zero.

Valid Modes

This primitive is valid in NNI mode only.

Valid States

This primitive is valid in any state other than CCS IDLE, CCS WIND MORE,
CCS WREQ INFO, CCS WCON SREQ, and CCS WIND PROCEED. In the
aforementioned states (other than CCS IDLE), a CC CALL REATTEMPT IND should
be issued instead.

142 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

New State

The new state is CCS IDLE.

2006-01-02 143

Chapter 4: CCI Primitives

4.2.6.4 Call Control Disconnect Request

CC DISCONNECT REQ

This primitive request that the CCS provider indicate to the calling CCS user that in-band
information may now be available in the voice channel reflecting the specified cause. The
CC DISCONNECT REQ primitive is an invitation to the remote CCS user to release the
call channel.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_disconnect_req {

ulong cc_primitive; /* always CC_DISCONNECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the CC DISCONNECT REQ message. It is used
by the CCS provider to associated the CC DISCONNECT REQ message with
an outstanding CC SETUP IND message. An invalid call reference should
result in error with the error type CCBADCLR.

cc cause Indicates the cause value for the disconnect.

cc opt length
Indicates the length of the optional parameters associated with the disconnect
request. If no optional parameters are associated with the disconnect request,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid only in UNI (Network or User) mode.

Valid States

This primitive is valid in states CCS WREQ MORE, CCS WREQ PROCEED,
CCS WREQ ALERTING and CCS WREQ PROGRESS.

New State

The new state is CCS WREQ CONNECT.

144 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

2006-01-02 145

Chapter 4: CCI Primitives

4.2.6.5 Call Control Disconnect Indication

CC DISCONNECT IND

This primitive indicates to the calling CCS user that there is in-band information now
available in the voice channel.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_disconnect_ind {

ulong cc_primitive; /* always CC_DISCONNECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc cause Indicates the cause value for the disconnect.

cc opt length
Indicates the length of the optional parameters associated with the in-band
information request. If no optional parameters are associated with the in band
information request, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid States

This primitive is valid in states CCS WIND MORE, CCS WREQ INFO,
CCS WIND PROCEED, CCS WIND ALERTING, CCS WIND PROGRESS and
CCS WIND CONNECT.

New State

The new state is CCS WIND CONNECT

146 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6.6 Call Control Release Request

CC RELEASE REQ

This primitive request that the CCS provider release the call and provide the specified cause
value to the remote CCS user.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_release_req {

ulong cc_primitive; /* always CC_RELEASE_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies the user call reference of the CC SETUP REQ when the
CC RELEASE REQ primitive is used in response to the CC SETUP REQ
and before a CC SETUP CON is issued. Otherwise, this parameter is coded
zero and is ignored by the CCS provider.

cc call ref Specifies the call reference of the CC SETUP IND when the
CC RELEASE REQ primitive is used in response to the CC SETUP IND on
a listening stream. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc cause Specifies the cause of the release. Cause values are CCS provider and protocol
specific. See the addendum for protocol specific values.

cc opt length
Specifies the length of the optional parameters associated with the release re-
quest. If no optional parameters are associated with the release request, then
this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User or Network) and NNI modes.

2006-01-02 147

Chapter 4: CCI Primitives

Valid States

This primitive is valid from any call state other than CCS IDLE and
CCS WCON RELREQ.

New State

If the current state is CCS WRES RELIND, the new state is CCS IDLE. If the current
state is other than CCS WRES RELIND, the new state is CCS WCON RELREQ.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC RELEASE IND or

CC RELEASE CON primitives.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCBADPRIM
The primitive was of an incorrect format (i.e. too small, or an offset it out

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADOPT
The options values as specified in the primitive were in an incorrect format,
or they contained illegal information.

CCACCESS
The user did not have proper permissions to request the operation or to
use the options specified.

CCNOTSUPP
The specified primitive type is not known to or not supported by the CCS
provider.

148 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6.7 Call Control Release Indication

CC RELEASE IND

This primitive indicates that the remote CCS user or CCS provider hsa released the call
with the specified cause value.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_release_ind {

ulong cc_primitive; /* always CC_RELEASE_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc user ref
Indicates the user call reference of the CC SETUP REQ when the
CC RELEASE IND primitive is used in response to the CC SETUP REQ
and before a CC SETUP CON is issued. Otherwise, this parameter is coded
zero and is ignored by the CCS provider.

cc call ref Indicates the call reference of the CC SETUP IND when the
CC RELEASE IND primitive is used in response to the CC SETUP IND on
a listening stream. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc cause Indicates the cause of the release. Cause values are CCS provider and protocol
specific. See the addendum for protocol specific values.

cc opt length
Indicates the length of the optional parameters associated with the release in-
dication. If no optional parameters are associated with the release indication,
then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User or Network) and NNI modes.

2006-01-02 149

Chapter 4: CCI Primitives

Valid States

This primitive is valid in any setup or established call state other than CCS IDLE and
CCS WRES RELIND.

New State

If the current state is CCS WCON RELREQ, the new state is CCS IDLE. If the current
state is other than CCS WCON RELREQ, then new state is CCS WRES RELIND.

150 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6.8 Call Control Release Response

CC RELEASE RES

This primitive indicates to the CCS provider that the release of the associated circuit is
complete.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_release_res {

ulong cc_primitive; /* always CC_RELEASE_RES */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies the user call reference of the CC SETUP REQ when the
CC RELEASE REQ primitive is used in response to the CC SETUP REQ
and before a CC SETUP CON is issued. Otherwise, this parameter is coded
zero and is ignored by the CCS provider.

cc call ref Specifies the call reference of the CC SETUP IND when the
CC RELEASE REQ primitive is used in response to the CC SETUP IND on
a listening stream. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc opt length
Specifies the length of the optional parameters associated with the release re-
sponse. If no optional parameters are associated with the release response, then
this parameter must be coded zero.

cc opt offset
Specifies the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User or Network) and NNI modes.

Valid States

This primitive is valid in state CCS WRES RELIND.

New State

The new state is CCS IDLE.

2006-01-02 151

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

152 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.2.6.9 Call Control Release Confirmation

CC RELEASE CON

This primitive indicates to the releasing CCS user that the release of the associated circuit
is complete.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_release_con {

ulong cc_primitive; /* always CC_RELEASE_CON */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_con_t;

Parameters

cc primitive
Indicates the primitive type.

cc user ref
Indicates the user call reference of the CC SETUP REQ when the
CC RELEASE IND primitive is used in response to the CC SETUP REQ
and before a CC SETUP CON is issued. Otherwise, this parameter is coded
zero and is ignored by the CCS provider.

cc call ref Indicates the call reference of the CC SETUP IND when the
CC RELEASE IND primitive is used in response to the CC SETUP IND on
a listening stream. Otherwise, this parameter is coded zero and is ignored by
the CCS provider.

cc opt length
Indicates the length of the optional parameters associated with the release con-
firmation. If no optional parameters are associated with the release confirma-
tion, then this parameter must be coded zero.

cc opt offset
Indicates the offset of the optional parameters from the start of the M PROTO
message block.

Valid Modes

This primitive is valid in UNI (User or Network) and NNI modes.

Valid States

This primitive is valid in state CCS WCON RELREQ.

New State

The new state is CCS IDLE.

2006-01-02 153

Chapter 4: CCI Primitives

4.3 Management Primitive Formats and Rules

This section describes the format of the UNI (Network and User) and NNI management
primitives and rules associated with these primitives.

4.3.1 Interface Management Primitives

4.3.1.1 Interface Management Restart Request

CC RESTART REQ

This primitive request the CCS provider to restart all the call control addresses (signalling
interface and channels) for the specified UNI interface.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_restart_req {

ulong cc_primitive; /* always CC_RESTART_REQ */

ulong cc_flags; /* restart flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_restart_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address (signalling interface and circuit
identifiers) upon which a restart was requested. The semantics of the values in
the CC RESET REQ is identical to the values in the CC BIND REQ.

cc addr offset
Indicates the offset of the reporting address from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

154 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.1.2 Interface Management Restart Confirmation

CC RESTART CON

This primitive confirms to the requesting CCS user that the restart of the requested call
control addresses (signalling interface and channels) for the specified UNI interface is com-
plete.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_restart_ind {

ulong cc_primitive; /* always CC_RESTART_IND */

ulong cc_flags; /* restart flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_restart_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address (signalling interface and circuit
identifiers) upon which a restart was requested. The semantics of the values in
the CC RESET REQ is identical to the values in the CC BIND REQ.

cc addr offset
Indicates the offset of the reporting address from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

2006-01-02 155

Chapter 4: CCI Primitives

4.3.2 Circuit Management Primitives

4.3.2.1 Circuit Management Reset Request

CC RESET REQ

This primitive requests that the CCS provider reset the specified call control address(es)
(signalling interface and circuit identifiers) with the CCS user peer. For the NNI this
primitive supports both the Circuit Reset Service as well as the Circuit Group Reset Service.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reset_req {

ulong cc_primitive; /* always CC_RESET_REQ */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address (signalling interface and circuit
identifiers) upon which a reset is requested. The semantics of the values in the
CC RESET REQ is identical to the values in the CC BIND REQ.

cc addr offset
Indicates the offset of the reporting address from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Rules

The following rules apply to the reset of call control addresses (signalling interface and
circuit identifiers):
• The call control address must contain a signalling interface identifier and one or more

circuit identifiers.
• The signalling interface identifier must identify an NNI signalling interface.
• When the call control address contains one circuit identifier, a non-group reset will be

performed.

156 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

• When the call control address contains more than one circuit identifier, the CCS
provider may either issue individual circuit resets, or may issue one or more group
circuit resets.

Valid Modes

This primitive is only valid for call control address(es) in the NNI mode.

Valid States

This primitive is valid in state CCS IDLE for the requested address(es).

New State

The new state is CCS WCON RESREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC RESET CON primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to perform the operation on
the specified call control addresses.

CCNOADDR
The call control address was not provided (cc addr length coded zero).

CCBADADDR
The call control address(es) contained in the primitive were poorly format-
ted or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
interface identifier was provided in the call control address.

CCOUTSTATE
The primitive was issued from an invalid state for the requested address(es).

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 157

Chapter 4: CCI Primitives

4.3.2.2 Circuit Management Reset Indication

CC RESET IND

This primitive indicates that the peer CCS user has requested that the specified call control
address(es) (signalling interface and circuit identifiers) be reset.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reset_ind {

ulong cc_primitive; /* always CC_RESET_IND */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) that the peer CCS user has requested be reset.

cc addr offset
Indicates the offset of the call control address(es) (signalling interface and circuit
identifiers) from the beginning of the M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will not be issued for call control addresses in modes other than NNI mode.

Valid States

This primitive will only be issued for call control addresses for which no reset indication
(CCS IDLE) is already pending.

New State

The new state is CCS WRES RESIND.

158 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.3 Circuit Management Reset Response

CC RESET RES

This primitive request the CCS provider to complete the reset operation for the specified
call control address(es) (signalling interface and circuit identifiers) which was previously
indicated with a CC RESET IND.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reset_res {

ulong cc_primitive; /* always CC_RESET_RES */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_res_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Indicates options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) upon which the CCS user has accepted a reset.

cc addr offset
Indicates the offset of the call control address(es) (signalling interface and circuit
identifiers) from the beginning of the M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Rules

The following rules apply to the reset of call control addresses (signalling interface and
circuit identifiers):
• The set of addresses specified must be a non-empty subset of the addresses which were

specified in the indication primitive to which this primitive is responding.
• Only once the primitive is successfully accepted by the CCS provider should the CCS

provider take any actions whatsoever with regard to reset.
• Call control addresses included in the call control address list which are not equipped

may be ignored by the CCS provider.

Valid States

This primitive is valid in state CCS WRES RESIND for the specified address(es).

2006-01-02 159

Chapter 4: CCI Primitives

New State

The new state is CCS WACK RESRES for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to perform the operation on
the specified call control addresses.

CCNOADDR
The call control address was not provided (cc addr length coded zero).

CCBADADDR
The call control address(es) contained in the primitive were poorly format-
ted or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
interface identifier was provided in the call control address.

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

160 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.4 Circuit Management Reset Confirmation

CC RESET CON

This primitive confirms to the requesting CCS user that the specified call control address(es)
(signalling interface and circuit identifiers) have been successfully confirmed reset to the peer
CCS user.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_reset_con {

ulong cc_primitive; /* always CC_RESET_CON */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_con_t;

Parameters

cc primitive
Indicates the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) upon which the CCS provider has confirmed a reset.

cc addr offset
Indicates the offset of the call control address(es) (signalling interface and circuit
identifiers) from the beginning of the M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for call control addresses in the NNI
mode.

Valid States

This primitive is valid in state CCS WCON RESREQ for the specified addresses.

New State

The new state is CCS IDLE for the specified addresses.

2006-01-02 161

Chapter 4: CCI Primitives

4.3.2.5 Circuit Management Blocking Request

CC BLOCKING REQ

This primitive request that the CCS provider locally block the specified call control ad-
dress(es) (signalling interface and circuit or circuit group) with the peer CCS user. For the
NNI, this primitive supports both the Circuit Blocking Service as well as the Circuit Group
Blocking Service.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_blocking_req {

ulong cc_primitive; /* always CC_BLOCKING_REQ */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit or
circuit group identifiers) upon which local blocking is requested. The semantics
of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Rules

The following rules apply to the blocking of call control addresses (signalling interface and
circuit or circuit group identifiers):
• If the stream upon which the blocking request is issued is not bound (see

CC BIND REQ), the call control address must contain a signalling interface identifier
and a circuit or circuit group identifier.

• If the stream upon which the blocking request is bound to a signalling interface and
trunk group, and no call control address(es) are provided (i.e, cc addr length is set to
zero), the CCS provider may interpret the primitive to be requesting blocking on all
circuits in the trunk group.

162 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

• At any time that the primitive is issued without specifying a call control address (i.e,
cc addr length is zero to zero), the CCS provider may assign a call control address or
addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will
fail with error CCNOADDR.

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI
mode.

Valid States

This primitive is valid in state CCS IDLE for the requested address(es).

New State

The new state is CCS WCON BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive.

— Successful : Successful completion is indicated via the CC BLOCKING CON primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or
CC RESET IND primitive.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation on the
specified addresses.

CCFLAGS
The flags were invalid or unsupported.

CCNOADDR
An address or addresses was not provided by the CCS user (i.e.,
cc addr length set to zero) and the CCS provider could not assign an
address or addresses.

CCBADADDR
The call control address contained in the primitive were illegally formatted
or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
interface identifier was provided in the call control address.

2006-01-02 163

Chapter 4: CCI Primitives

CCOUTSTATE
The primitive was issued from an invalid state for the requested address(es).

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

164 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.6 Circuit Management Blocking Indication

CC BLOCKING IND

This primitive indicates that the peer CCS user has requested that the specified call control
address(es) (signalling interface and circuit identifiers) be remotely blocked.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_blocking_ind {

ulong cc_primitive; /* always CC_BLOCKING_IND */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_ind_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags. See "Flags" below.

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) that the peer CCS user has requested to be remotely blocked.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the
specified address(es) is CCS UNBLOCKED or CCS BLOCKED.

New State

The new remote blocking state will be CCS WRES BLIND for the specified call control
addresses.

2006-01-02 165

Chapter 4: CCI Primitives

4.3.2.7 Circuit Management Blocking Response

CC BLOCKING RES

This primitive requests that the CCS provider respond to the previous blocking indication.

Format
The format is one M PROTO message block. The structure of the M PROTO message
block is as follows:

typedef struct CC_blocking_res {

ulong cc_primitive; /* always CC_BLOCKING_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit or
circuit group identifiers) upon which local blocking is requested. The semantics
of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC BLOCKING IND (call control addresses
in the CCS WRES BLIND state).

New State

The new blocking state of the previously specified call control addresses is the
CCS BLOCKED state.

166 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or

CCS RESET IND primitive.
— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-

plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation.

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 167

Chapter 4: CCI Primitives

4.3.2.8 Circuit Management Blocking Confirmation

CC BLOCKING CON

This primitive confirms a previous blocking request (or indicates failure of a previous block-
ing request).

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_blocking_con {

ulong cc_primitive; /* always CC_BLOCKING_CON */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_con_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) for which local blocking is confirmed.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive will only be issued by the CCS provider if the local blocking state of the
specified address(es) is CCS WCON BLREQ.

New State

The new local blocking state will be CCS BLOCKED for the specified call control addresses.

168 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.9 Circuit Management Unblocking Request

CC UNBLOCKING REQ

This primitive requests that the CCS provider locally unblock the specified call control
address(es) (signalling interface and circuit or circuit group) with the peer CCS user. For
the NNI, this primitive supports both Circuit Unblocking Service as well as the Circuit
Group Unblocking Service.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_unblocking_req {

ulong cc_primitive; /* always CC_UNBLOCKING_REQ */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) upon which local unblocking is requested. The
semantics of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Rules

The following rules apply to the unblocking of call control addresses (signalling interface
and circuit or circuit group identifiers):
• If the stream upon which the unblocking request is issued is not bound (see

CC BIND REQ), the call control address must contain a signalling interface identifier
and a circuit or circuit group identifier.

• If the stream upon which the unblocking request is bound to a signalling interface and
trunk group, and no call control address(es) are provided (i.e, cc addr length is set to
zero), the CCS provider may interpret the primitive to be requesting unblocking on all
circuits in the trunk group.

2006-01-02 169

Chapter 4: CCI Primitives

• At any time that the primitive is issued without specifying a call control address (i.e,
cc addr length is zero to zero), the CCS provider may assign a call control address or
addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will
fail with error CCNOADDR.

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI
mode.

Valid States

This primitive is valid in state CCS IDLE for the requested address(es).

New State

The new state is CCS WCON BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive.

— Successful : Successful completion is indicated via the CC BLOCKING CON primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or
CC RESET IND primitive.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation on the
specified addresses.

CCFLAGS
The flags were invalid or unsupported.

CCNOADDR
An address or addresses was not provided by the CCS user (i.e.,
cc addr length set to zero) and the CCS provider could not assign an
address or addresses.

CCBADADDR
The call control address contained in the primitive were illegally formatted
or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
interface identifier was provided in the call control address.

170 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

CCOUTSTATE
The primitive was issued from an invalid state for the requested address(es).

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 171

Chapter 4: CCI Primitives

4.3.2.10 Circuit Management Unblocking Indication

CC UNBLOCKING IND

This primitive indicates that the peer CCS user has requested that the specified call control
address(es) (signalling interface and circuit identifiers) be remotely unblocked.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_unblocking_ind {

ulong cc_primitive; /* always CC_UNBLOCKING_IND */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_ind_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags. See "Flags" below.

cc addr length
\Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) that the peer CCS user has requested to be remotely un-
blocked.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive will only be issued by the CCS provider if the remote blocking state of the
specified address(es) is CCS UNBLOCKED or CCS BLOCKED.

New State

The new remote blocking state will be CCS WRES UBIND for the specified call control
addresses.

172 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.11 Circuit Management Unblocking Response

CC UNBLOCKING RES

This primitive requests that the CCS provider respond to the previous unblocking indica-
tion.

Format
The format is one M PROTO message block. The structure of the M PROTO message
block is as follows:

typedef struct CC_unblocking_res {

ulong cc_primitive; /* always CC_UNBLOCKING_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) upon which local unblocking is requested. The
semantics of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC BLOCKING IND (call control addresses
in the CCS WRES BLIND state).

New State

The new blocking state of the previously specified call control addresses is the
CCS UNBLOCKED state.

2006-01-02 173

Chapter 4: CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or

CCS RESET IND primitive.
— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-

plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation.

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

174 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.12 Circuit Management Unblocking Confirmation

CC UNBLOCKING CON

This primitive confirms a previous unblocking request (or indicates failure of a previous
unblocking request).

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_unblocking_con {

ulong cc_primitive; /* always CC_UNBLOCKING_CON */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_con_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) for which local unblocking is confirmed.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive will only be issued by the CCS provider if the local unblocking state of the
specified address(es) is CCS WCON UBREQ.

New State

The new local unblocking state will be CCS UNBLOCKED for the specified call control
addresses.

2006-01-02 175

Chapter 4: CCI Primitives

4.3.2.13 Circuit Management Query Request

CC QUERY REQ

This primitive requests that the CCS provider query specified call control address(es) (sig-
nalling interface and circuit or circuit group) to the peer CCS user. For the NNI, this
primitive supports the Circuit Group Query Service.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_query_req {

ulong cc_primitive; /* always CC_QUERY_REQ */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) upon which the query is requested. The semantics
of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Rules

The following rules apply to the querying of call control addresses (signalling interface and
circuit or circuit group identifiers):

• If the stream upon which the query request is issued is not bound (see CC BIND REQ),
the call control address must contain a signalling interface identifier and a circuit or
circuit group identifier.

• If the stream upon which the query request is bound to a signalling interface and trunk
group, and no call control address(es) are provided (i.e, cc addr length is set to zero),
the CCS provider may interpret the primitive to be requesting status on all circuits in
the trunk group.

176 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

• At any time that the primitive is issued without specifying a call control address (i.e,
cc addr length is zero to zero), the CCS provider may assign a call control address or
addresses.

• If the CCS provider fails to assign a call control address or addresses, the primitive will
fail with error CCNOADDR.

Valid Modes

This primitive is only valid for call control address(es) (signalling interfaces) in the NNI
mode.

Valid States

This primitive is valid in state CCS IDLE for the requested address(es).

New State

The new state is CCS WCON BLREQ for the specified address(es).

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive.

— Successful : Successful completion is indicated via the CC BLOCKING CON primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or
CC RESET IND primitive.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation on the
specified addresses.

CCFLAGS
The flags were invalid or unsupported.

CCNOADDR
An address or addresses was not provided by the CCS user (i.e.,
cc addr length set to zero) and the CCS provider could not assign an
address or addresses.

CCBADADDR
The call control address contained in the primitive were illegally formatted
or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
interface identifier was provided in the call control address.

2006-01-02 177

Chapter 4: CCI Primitives

CCOUTSTATE
The primitive was issued from an invalid state for the requested address(es).

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

178 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.2.14 Circuit Management Query Indication

CC QUERY IND

This primitive indicates that the peer CCS user has requested that the specified call control
address(es) (signalling interface and circuit identifiers) be queried.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO message block is as follows:

typedef struct CC_query_ind {

ulong cc_primitive; /* always CC_QUERY_IND */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_ind_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags. See "Flags" below.

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) that the peer CCS user has requested to be queried.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive is valid in any state for the specified address(es).

New State

The new query state will be CCS WRES QIND for the specified call control addresses and
the number of outstanding queries for the specified call control addresses will be incre-
mented.

2006-01-02 179

Chapter 4: CCI Primitives

4.3.2.15 Circuit Management Query Response

CC QUERY RES

This primitive requests that the CCS provider respond to the previous query indication.

Format
The format is one M PROTO message block. The structure of the M PROTO message
block is as follows:

typedef struct CC_query_res {

ulong cc_primitive; /* always CC_QUERY_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies options flags for the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) upon which the query is requested. The semantics
of the values in the call control address is described in Section 2.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive is only valid for indications for signalling interfaces in the NNI mode.

Valid States

This primitive is only valid for the previous CC BLOCKING IND (call control addresses
in the CCS WRES BLIND state).

New State

The new query state of the previously specified call control addresses is the CCS IDLE or
CCS WRES QIND state and the query backlog is decremented.

180 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful : Unsuccessful completion is indicated via the CC RELEASE IND or

CCS RESET IND primitive.
— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-

plicable non-fatal errors are defined as follows:

CCACCESS
The user did not have sufficient permission to invoke the operation.

CCOUTSTATE
The primitive was issued from an invalid state.

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

2006-01-02 181

Chapter 4: CCI Primitives

4.3.2.16 Circuit Management Query Confirmation

CC QUERY CON

This primitive confirms a previous query request (or indicates failure of a previous query
request).

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_query_con {

ulong cc_primitive; /* always CC_QUERY_CON */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

Parameters

cc primitive
Specifies the primitive type.

cc flags Specifies the options flags and result of the operation. (See "Flags" below.)

cc addr length
Specifies the length of the call control address (signalling interface and circuit
or circuit group identifiers) for which status is confirmed.

cc addr offset
Specifies the offset of the call control address(es) from the beginning of the
M PROTO message block.

Flags

The options flags are protocol and provider-specific. For additional information, see the
Addendum.

Valid Modes

This primitive will only be issued by the CCS provider for signalling interfaces in the NNI
mode.

Valid States

This primitive will only be issued by the CCS provider if the query state of the specified
address(es) is CCS WCON QREQ.

New State

The new query state will be CCS IDLE for the specified call control addresses.

182 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.3 Maintenance Primitives

4.3.3.1 Maintenance Indication

CC MAINT IND

This primitive indicates that the CCS provider has observed an event on the indicated call
control address(es) which requires a maintenance action.

Format
The format of this message is one M PROTO message block followed by zero or more
M DATA blocks. The structure of the M PROTO message block is as follows:

typedef struct CC_maint_ind {

ulong cc_primitive; /* always CC_MAINT_IND */

ulong cc_reason; /* reason for indication */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc reason Indicates the reason for the maintenance indication. Maintenance indication
reasons are protocol and provider-specific. For additional information see the
Addendum.

cc call ref Indicates the call reference. The call reference is used by the CCS provider to
identify the call.

cc addr length
Indicates the length of the call control address(es) (signalling interface and
circuit identifiers) upon which the CCS provider is giving a maintenance indi-
cation.

cc addr offset
Indicates the offset of the call control address(es) from the beginning of the
M PROTO message block.

Valid Modes

This primitive is valid in UNI (Network) mode and NNI mode.

Valid States

This primitive is valid in any state.

New State

The new state is unchanged.

2006-01-02 183

Chapter 4: CCI Primitives

4.3.4 Circuit Continuity Test Primitives

This section describes the format of the NNI circuit continuity test primitives and rules
associated with these primitives. Continuity test primitives are used by NNI management
interfaces for performing continuity test requests or responding to continuity test indications
for specified or indicated circuits. These primitives are provided to allow the NNI to meet
Q.764 conformance.

4.3.4.1 Circuit Continuity Check Request

CC CONT CHECK REQ

This primitive requests that the CCS provider perform a continuity check procedure.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_check_req {

ulong cc_primitive; /* always CC_CONT_CHECK_REQ */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_check_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc addr length
Specifies the length of the call control address (circuit identifier) upon which
the CCS user is requesting a continuity check.

cc addr offset
Specifies the offset of the call control address from the beginning of the
M PROTO message block.

Rules

The following rules apply to the continuity check of call control addresses (circuit identifiers):

• If the CCS user does not specify a call control address (i.e, cc addr length is set to
zero), then the CCS provider may attempt to assign a call control address and associate
it with the stream for the duration of the continuity test procedure. This can be useful
for automated continuity testing.

Valid Modes

This primitive is only valid in the NNI mode.

Valid States

This primitive is valid in state CCS IDLE for the selected circuit.

184 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

New State

The new state is CKS WIND CTEST for the selected address.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC CONT TEST IND primi-

tive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCNOADDR
The call control address was not provided (cc addr length coded zero).

CCBADADDR
The call control address contained in the primitive were poorly formatted
or contained invalid information.

CCNOTSUPP
The primitive is not supported for the UNI interface and a UNI signalling
address was provided in the call control address or the address was issued
to a UNI CCS provider.

CCACCESS
The user did not have sufficient permission to perform the operation on
the specified call control addresses.

2006-01-02 185

Chapter 4: CCI Primitives

4.3.4.2 Circuit Continuity Check Indication

CC CONT CHECK IND

This primitive indicates to the CCS user that a continuity check is being requested by
the CCS user peer on the specified call control address(es) (signalling interface and circuit
identifiers). Upon receipt of this primitive, the CCS user should establish a loop back device
on the specified channel and issues the CC CONT TEST REQ primitive confirming the
loop back. The CCS user should then wait for the CC CONT REPORT IND indicating
the success or failure of the continuity check.

This primitive is only delivered to listening streams listening on the specified call con-
trol addresses or to a stream bound as a default listener in the same manner as the
CC SETUP IND. (A continuity test indication is treated as a special form of call setup.)

This primitive is only issued to CCS users that successfully bound using the CC BIND REQ
primitive with flag CC TEST set and a non-zero number of setup indications was provided
in the CC BIND REQ and returned in the CC BIND ACK.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_check_ind {

ulong cc_primitive; /* always CC_CONT_CHECK_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_check_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Identifies the call reference that can be used by the CCS user to associate
this message with the CC CONT TEST REQ or CC RELEASE REQ prim-
itive that is to follow. This value must be unique among the outstanding
CC CONT CHECK IND messages.

cc addr length
Indicates the length of the call control address (circuit identifier) upon which a
continuity check is indicated.

cc addr offset
Indicates the offset of the requesting address from the beginning of the
M PROTO message block.

Valid Modes

This primitive is only valid for addresses in the NNI mode.

186 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Valid States

This primitive is valid in state CCS IDLE for the specified addresses.

New State

The new state is CKS WREQ CTEST for the specified addresses.

2006-01-02 187

Chapter 4: CCI Primitives

4.3.4.3 Circuit Continuity Test Request

CC CONT TEST REQ

This message is used either to respond to a CC SETUP IND primitive which contains the
ISUP NCI CONT CHECK REQUIRED flag, or to respond to a CC CONT CHECK IND
primitive. Before responding to either primitive, the CCS User should install a loop back
device on the requested channel and then respond with this response primitive to confirm
the loop back.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_test_req {

ulong cc_primitive; /* always CC_CONT_TEST_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference of the CC CONT TEST REQ message. It is used
by the CCS provider to associate the CC CONT TEST REQ message with an
outstanding CC SETUP IND message. An invalid call reference should result
in error with the error type CCBADCLR.

cc token value
Is used to identify the stream that the CCS user wants to establish the con-
tinuity check call on. (Its value is determined by the CCS user by issuing a
CC BIND REQ primitive with the CC TOKEN REQUEST flag set. The to-
ken value is returned in the CC BIND ACK.) The value of this field should be
non-zero when the CCS user wants to establish the call on a stream other than
the stream on which the CC CONT CHECK IND arrived. If the CCS user
wants to establish a call on the same stream that the CC CONT CHECK IND
arrived on, then the value of this field should be zero.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CKS WREQ CTEST.

New State

The new state is CKS WIND CCREP.

188 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC CONT REPORT IND

in the case that the primitive was issued in response to a CC SETUP IND, or
CC RELEASE IND primitive in the case that the primitive was issued in response to
the CC CONT CHECK IND primitive.

— Unsuccessful : Unsuccessful completion is indicated via the CC CONT REPORT IND
primitive.

— Non-fatal errors: Errors are indicated via the CC ERROR ACK primitive. The ap-
plicable non-fatal errors are defined as follows:

CCSYSERR
A system error has occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCACCESS
The user did not have proper permissions for the operation.

CCNOTSUPP
The CCS provider does not support the operation.

2006-01-02 189

Chapter 4: CCI Primitives

4.3.4.4 Circuit Continuity Test Indication

CC CONT TEST IND

This message confirms to the testing CCS user that a loop back device has been (or will be)
installed on the specified call control address (circuit). Upon receiving this message, the
testing CCS user should connect tone generation and detection equipment to the specified
circuit, perform the continuity test and issue a report using the CC CONT REPORT REQ
primitive.
This primitive will only be issued to streams successfully bound with the CC BIND REQ
primitive with a non-zero number of setup indications and the CC TEST bind flag set.

Format
The format of this message is on M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_test_ind {

ulong cc_primitive; /* always CC_CONT_TEST_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_test_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference associated with the continuity check call for the
specified call control address (circuit identifier).

cc addr length
Indicates the length of the call control address (signalling interface and cir-
cuit identifier) upon which a continuity check is confirmed. The semantics
of the values in the CC CONT TEST IND is identical to the values in the
CC BIND REQ.

cc addr offset
Indicates the offset of the connecting address from the beginning of the
M PROTO message block.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WCON CREQ.

New State

The new state is CCS WAIT COR.

190 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.4.5 Circuit Continuity Report Request

CC CONT REPORT REQ

This primitive requests that the CCS provider indicate to the called CCS user that the
continuity check succeeded or failed. The CCS user should remove any continuity test tone
generator/detection device from the circuit and verify silent code loop back before issuing
this primitive.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_report_req {

ulong cc_primitive; /* always CC_CONT_REPORT_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

Parameters

cc primitive
Specifies the primitive type.

cc user ref
Specifies the CCS user reference of the associated CC SETUP REQ primitive.
This value is non-zero when the CC CONT REPORT REQ primitive is
issued subsequent to a CC SETUP REQ primitive which had the flag
ISUP NCI CONTINUITY CHECK PREVIOUS set to indicate the result of
the continuity check on the previous circuit. Otherwise, this value is coded
zero.

cc call ref Specifies the call reference of the associated CC CONT TEST IND
primitive for the continuity check call. This value is non-zero when
the CC CONT REPORT REQ primitive is issued in response to a
CC CONT TEST IND primitive. Otherwise, this value is coded zero.

cc result Specifies the result of the continuity test, whether success or failure. The value
of the cc result is protocol specific. For values representing success and values
representing failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WREQ CCREP.

New State

When issued in response to the CC CONT TEST IND primitive, the new state is
CCS IDLE. When issued subsequent to a CC SETUP REQ primitive, the new state is

2006-01-02 191

Chapter 4: CCI Primitives

either CCS WREQ MORE or CCS WREQ PROCEED, depending upon whether the
sent address contain an ST pulse.

Acknowledgements

The CCS provider should generate one of the following acknowledgements upon receipt of
this primitive:
— Successful : Successful completion is indicated via the CC OK ACK primitive.
— Unsuccessful (Non-fatal errors): Errors are indicated via the CC ERROR ACK prim-

itive. The applicable non-fatal errors are defined as follows:

CCSYSERR
A system error occurred and the UNIX system error is indicated in the
primitive.

CCOUTSTATE
The primitive was issued from an invalid state.

CCBADCLR
The call reference specified in the primitive was incorrect or illegal.

CCBADPRIM
The primitive format was incorrect.

192 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Primitives

4.3.4.6 Circuit Continuity Report Indication

CC CONT REPORT IND

This primitive indicates to the called CCS user that the continuity check succeeded or failed.
The called CCS user can remove the loop back or tone generation/detection devices from
the circuit and the call either moves to the idle state or a call setup state.

Format
The format of this message is one M PROTO message block. The structure of the
M PROTO block is as follows:

typedef struct CC_cont_report_ind {

ulong cc_primitive; /* always CC_CONT_REPORT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

Parameters

cc primitive
Indicates the primitive type.

cc call ref Indicates the call reference associated with the continuity check report as it
appeared in the associated CC CONT CHECK IND primitive.

cc result Indicates the result of the continuity test, whether success or failure. The value
of the cc result is protocol specific. For values representing success and values
representing failure, see the Addendum.

Valid Modes

This primitive is valid only in NNI mode.

Valid States

This primitive is valid in state CCS WREQ CTEST or CCS WIND CCREP.

New State

If the primitive is issued subsequent to the CC SETUP REQ, the new state is
CCS WCON SREQ. If the primitive is issued in response to the CC CONT TEST IND
primitive, the new state is CCS IDLE.

2006-01-02 193

Chapter 4: CCI Primitives

4.3.5 Collecting Information Phase

The following call control service primitive pertain to the collecting information phase of a
call.

194 Version 0.9a Ed. 3

Call Control Interface (CCI) Diagnostics Requirements

5 Diagnostics Requirements

Two error handling facilities should be provided to the call control service user: one to
handle non-fatal errors, ant the other to handle fatal errors.

5.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the call control service interface or the
call reference as seen by the call control service user, and provide the user the option of
reissuing the call control service primitive with the corrected options specification. The
non-fatal error handling is provided only to those primitive that require acknowledgements,
and uses the CC ERROR ACK primitive to report these errors. These errors retain the
state of the call control service interface and call reference the same as it was before the
call control service provider received the primitive that was in error. Syntax errors and rule
violations are reported via the non-fatal error handling facility.

5.2 Fatal Error Handling Facility

These errors are issued by the CCS provider when it detects errors that are not correctable
by the call control service user, or if it is unable to report a correctable error to the call
control service user. Fatal errors are indicated via the STREAMS message type M ERROR
with the UNIX system error EPROTO. The M ERROR STREAMS message type will result
in the failure of all the UNIX system calls on the stream. The call control service user can
recover from a fatal error by having all the processes close the files associated with the
stream, and then reopening them for processing.

2006-01-02 195

Chapter 5: Diagnostics Requirements

196 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

Addendum for Q.931 Conformance

This addendum describes the formats and rules that are specific to ISDN Q.931. The
addendum must be used along with the generic CCI as defined in the main document when
implementing a CCS provider that will be configured with the Q.931 call processing layer.

Primitives and Rules for Q.931 Conformance

The following are the rules that apply to the CCI primitives for Q.931 compatibility.

Common Primitive Parameters

Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters

cc addr length
Specifies or indicates the length of the call control address. If a call control
address is not included in the primitive, this parameter must be coded zero (0).

cc addr offset
Specifies or indicates the offset of the address from the begining of the primitive.
If a call control address is not included with the primitive, this parameter must
be coded zero (0).

Address Format
The format of the call control addresses for Q.931 conforming CCS providers is as follows:

typedef struct isdn_addr {

ulong scope; /* the scope of the identifier */

ulong id; /* the identifier within the scope */

ulong ci; /* channel identifier within the scope */

} isdn_addr_t;

#define ISDN_SCOPE_CH 1 /* channel scope */

#define ISDN_SCOPE_FG 2 /* facility group scope */

#define ISDN_SCOPE_TG 3 /* transmission group scope */

#define ISDN_SCOPE_EG 4 /* equipment group scope */

#define ISDN_SCOPE_XG 5 /* customer/provider group scope */

#define ISDN_SCOPE_DF 6 /* default scope */

Address Fields

scope Specifies or indicates the scope of the call control address. See "Scope" below.

id Specifies or indicates the identifier within the scope.

cic Specifies or indicates the Channel Indicator significant within the scope.

2006-01-02 197

Addendum for Q.931 Conformance

Scope

The scope of the address is one of the following:

ISDN SCOPE CH
Specifies or indicates that the scope of the call control address is an ISDN
B-channel. The identifier within the scope is an identifier which uniquely iden-
tifies the channel to the CCS provider. Channel scope addresses may also be
used to specify or indicate transmission groups, equipment groups and cus-
tomer/provider groups. When used in an indication or confirmation primitive,
the CCS provider includes the Channel Identification associated with the circuit
in the address.

For multi-rate calls where multiple channels are involved, the channel scoped
address specifies the lowest numerical Channel Identifier in the group of circuits
and the Channel Identifier provides the channel map of the group of channels.

ISDN SCOPE FG
Specifies or indicates that the scope of the call control address is an ISDN
facility group (group of one or more redundant D-channels). The identifier
within the scope is an identifier which uniquely identifies the ISDN interface to
the CCS provider. Facility group scope addresses may also be used to specify
or indicate channels, equipment groups or customer/provider groups. When
used in an indication or confirmation primitive, the CCS provider includes the
Channel Identifier associated with the indicated channels.

ISDN SCOPE TG
Specifies or indicates that the scope of the call control address is an ISDN trans-
mission group (PRI interface). The identifier within the scope is an indentifier
which uniquely identifies the ISDN physical interface to the CCS provider.
Transmission group scope addresses may also be used to specify or indicate
equipment groups or customer/provider groups. When used in an indication or
confirmation primitive, the CCS provider may include the Channel Identifier
associated with the facility group for the physical interface.

ISDN SCOPE EG
Specifies or indicates that the scope of the call control address is an ISDN
equipment group. The identifier within the scope is an identifier that uniquely
identifies the equipment group to the CCS provider. Equipment group scoped
addresses may aslo be used to specify or indicate customer/provider groups.

ISDN SCOPE XG
Specifies or indicates that the scope of the call control address is an ISDN
customer/provider group. The identifier within the scope is an identifier that
uniquely identifies the customer/provider group to the CCS provider.

ISDN SCOPE DF
Specifies or indicates that the scope of the call control address is the default
scope. The identifier within the scope and Channel Identifier are unused and

198 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

should be ignored by the CCS user and will be coded zero (0) by the CCS
provider.

Rules

Rules for scope:

1. In primitives in which the address parameter occurs, the scope field setting indicates
the scope of the address parameter.

2. Only one call control address can be specified with a signle scope.

3. Not all scopes are necessarily supported by all primitives. See the particular primitive
in this addendum.

Rules for addresses:

1. The address contained in the primitive contains the following:

• A scope.

• An identifier within the scope or zero (0).

• A channel indication within the scope or zero (0).

2. If the scope of the address is ISDN SCOPE DF, then both the identifier and channel
indication fields should be coded zero (0) and will be ignored by the CCS user or
provider.

3. If the scope of the address is ISDN SCOPE EG or ISDN SCOPE XG, then the channel
indication field should be coded zero (0) and will be ignored by the CCS user or provider.

4. In all other scopes, the channel indication field is optional and is coded zero (0) if
unused.

Optional Information Elements

Format

The format of the optional information elements is as follows:

Parameters

cc opt length
Indicates the length of the optional information elements associated with the
primitive. For Q.931 conforming CCS providers, the format of the optional
information elements is the format of a Information Element list as specified in
Q.931.

cc opt offset
indicates the offset of the option information elements from the beginning of
the block.

Rules

Rules for optional information elements:

2006-01-02 199

Addendum for Q.931 Conformance

1. The optional information elements provided by the CCS user may be checked for syn-
tax by the CCS provider. If the CCS provider discovers a syntax error in the for-
mat of the optional information elements, the CCS provider should respond with a
CC ERROR ACK primitive with error CCBADOPT.

2. For some primitives, specific optional information elements might be interpreted by
the CCS provider and alter the function of some primitives. See the specific primitive
descriptions later in this addendum.

3. Except for optional information elements interpreted by the CCS provider as specified
later in this addendum, the optional information elements are treated as opaque and
the optional information element list only is checked for syntax. Opaque information
elements will be passed to the ISDN message without examination by the CCS provider.

4. To perform specific functions, additional optional information elements may be added
to ISDN messages by the CCS provider.

5. To perform specific functions, optional information elements may be modified by the
CCS provider before they are added to ISDN messages.

Local Management Primitives

CC INFO ACK

Parameters

Flags

Rules

CC BIND REQ

Parameters

cc addr length
Specifies the length of the address to bind.

cc addr offset
Specifies the offset of the address to bind.

cc setup ind
Specifies the requested maximum number of setup indications that will be out-
standing for the listening stream.

Flags

CC DEFAULT LISTENER
CC CHANNEL
CC CHANNEL GROUP
CC TRUNK GROUP

When on of these flags are set, it indicates that the address is interpreted
by the CCS provider as unspecified (CC DEFAULT LISTENER), a channel

200 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

(CC CHANNEL), as a channel group (CC CHANNEL GROUP), or as a trunk
group (CC TRUNK GROUP).

Rules

Rules for address specification:

1. The address contained in the primitive must be either a unspecified, a channel, a
channel group or a trunk group.

2. If the CC DEFAULT LISTENER flag is set, the address should be left unspecified by
the CCS user and should be ignored by the CCS provider.

Rules for setup indicatesion:

1. If the number of setup indications is non-zero, the stream is bound as a listening stream.
Listening streams will receive all calls that are incoming on the address bound:
• If the address bound is a channel (CC CHANNEL flag set), all incoming calls on

the channel will be delivered to the stream listening on the channel. These streams
will have a maximum number of setup indications of one (1).

• If the address bound is a channel group (CC CHANNEL GROUP flag set), all
incoming calls on the channel group will be delivered to the stream listening on the
channel group. These streams will have a maximum number of setup indications
no higher than the number of channels in the channel group.

• If the address bound is a trunk group (CC TRUNK GROUP flag set), all incoming
calls on the trunk group will be delivered to the stream listening on the trunk group.
These streams will have a maximum number of setup indications no higher than
the number of channels in the trunk group.

Rules for bind flags:

1. For Q.931 conforming CCS providers, the CC DEFAULT LISTENER will receive in-
coming calls that have no other listening stream. There can only be one stream bound
with the CC DEFAULT LISTENER flag set.

2. Only one of CC DEFAULT LISTENER, CC CHANNEL, CC CHANNEL GROUP or
CC TRUNK GROUP may be set.

CC BIND ACK

Parameters

Flags

Rules

CC OPTMGMT REQ

Parameters

Flags

2006-01-02 201

Addendum for Q.931 Conformance

Rules

Call Setup Primitives

Call Type and Flags

Call type and flags are used in the following primitives:
CC SETUP REQ and CC SETUP IND.

Parameters

cc call type
Indicates the type of call to be set up. For Q.931 conforming CCS providers,
the call type can be one of the call types listed under "Call Type" below.

cc call flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Flags" below.

Call Type

The following call types are defined for Q.931 conforming CCS providers:

CC CALL TYPE SPEECH
The call type is speech. This call type corresponds to a Q.931 Information
transfer capability of Speech, and an Information transfer rate of 64kbit/s.

CC CALL TYPE 64KBS UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This call type cor-
responds to a Q.931 Information transfer capability of Unrestricted, and an
Information transfer rate of 64kbit/s.

CC CALL TYPE 3 1kHZ AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a Q.931 Infor-
mation transfer capability of Unrestricted, and an Information transfer rate of
64kbits/s.

CC CALL TYPE 128KBS UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and an
Information transfer rate of 2x64 kbit/s.

CC CALL TYPE 384KBS UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and an
Information transfer rate of 384 kbit/s.

CC CALL TYPE 1536KBS UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and an
Information transfer rate of 1536 kbit/s.

202 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC CALL TYPE 1920KBS UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and an
Information transfer rate of 1920 kbit/s.

CC CALL TYPE 2x64KBS UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 2.

CC CALL TYPE 3x64KBS UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 3.

CC CALL TYPE 4x64KBS UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 4.

CC CALL TYPE 5x64KBS UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 5.

CC CALL TYPE 6x64KBS UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 6.

CC CALL TYPE 7x64KBS UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 7.

CC CALL TYPE 8x64KBS UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 8.

CC CALL TYPE 9x64KBS UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and

2006-01-02 203

Addendum for Q.931 Conformance

an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 9.

CC CALL TYPE 10x64KBS UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 10.

CC CALL TYPE 11x64KBS UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 11.

CC CALL TYPE 12x64KBS UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 12.

CC CALL TYPE 13x64KBS UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 13.

CC CALL TYPE 14x64KBS UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 14.

CC CALL TYPE 15x64KBS UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 15.

CC CALL TYPE 16x64KBS UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 16.

CC CALL TYPE 17x64KBS UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 17.

204 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC CALL TYPE 18x64KBS UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 18.

CC CALL TYPE 19x64KBS UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 19.

CC CALL TYPE 20x64KBS UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 20.

CC CALL TYPE 21x64KBS UNRESTRICTED
The call type is 21 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 21.

CC CALL TYPE 22x64KBS UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 22.

CC CALL TYPE 23x64KBS UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 23.

CC CALL TYPE 24x64KBS UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 24.

CC CALL TYPE 25x64KBS UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 25.

2006-01-02 205

Addendum for Q.931 Conformance

CC CALL TYPE 26x64KBS UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 26.

CC CALL TYPE 27x64KBS UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 27.

CC CALL TYPE 28x64KBS UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 28.

CC CALL TYPE 29x64KBS UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 29.

CC CALL TYPE 30x64KBS UNRESTRICTED
The call type is 30 x 64 kbit/s unrestricted digital information. This call type
corresponds to a Q.931 Information transfer capability of Unrestricted, and
an Information transfer rate of multi-rate with a base rate of 64 kbit/s and a
multiplier of 30.

Flags

The following call flags are defined for Q.931 conforming CCS providers:

CC ITC WITH TONES AND ANNOUNCEMENTS"
When set, this flag indicates that the unrestricted digital information includes
tones and announcements.

Rules

CC SETUP REQ

Parameters

cc call type
Specifies the type of call to be set up. For Q.931 conforming CCS providers,
the call type can be one of the call types listed under "Call Type and Flags"
in this addendum.

206 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

cc call flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and
Flags" in this addendum.

cc cdpn length
Specifies the length of the called party number. For Q.931 conforming CCS
providers, the format of the called party number is the format of the Called
Party Number parameter (without the parameter type or length octets) as
specified in Q.931.

cc cdpn offset
Specifies the offset of the called party number from the beginning of the block.

Rules

Rules for call type:

1. A CCS provider need not support all of the call types listed.

Rules for call flags:

1. The CC ITC WITH TONES AND ANNOUNCEMENTS flag may only be set when
the call type is unrestricted digital information. When the call type is not unrestricted
digital information, this flag should be ignored by the CCS provider.

Rules for called party number:

Rules for generating a SETUP message:

1. The mandatory (first) Bearer Capability information element in the SETUP message
will be derived from the call type and flags. The Bearer Capability information element
will contain the Information transfer capability, rate, base and multiplier indicated
above.
• When the call type is CC CALL TYPE 128KBS UNRESTRICTED, the Bearer

Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC ITC WITH TONES AND ANNOUNCEMENTS i set) and an Information
transfer rate of 2 x 64 kbit/s uni-rate call. For a multi-rate call, the call type
should be coded as CC CALL TYPE 2x64KBS UNRESTRICTED.

• When the call type is CC CALL TYPE 384KBS UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC ITC WITH TONES AND ANNOUNCEMENTS i set) and an Information
transfer rate of 384 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC CALL TYPE 6x64KBS UNRESTRICTED.

• When the call type is CC CALL TYPE 1536KBS UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC ITC WITH TONES AND ANNOUNCEMENTS i set) and an Information

2006-01-02 207

Addendum for Q.931 Conformance

transfer rate of 1536 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC CALL TYPE 24x64KBS UNRESTRICTED.

• When the call type is CC CALL TYPE 1920KBS UNRESTRICTED, the Bearer
Capability information element will be coded with an Information transfer ca-
pability of unrestricted (or unrestricted with tones an announcements if the flag
CC ITC WITH TONES AND ANNOUNCEMENTS i set) and an Information
transfer rate of 1920 kbit/s uni-rate call. For a multi-rate call, the call type should
be coded as CC CALL TYPE 29x64KBS UNRESTRICTED.
• The mandatory Channel Identification information element in the SETUP

message will be derived from the address to which the stream is bound.
• If the stream is bound to a channel group (the one or more interfaces), then a free

channel will be selected automatically by the CCS provider (if possible).
• If the stream is bound to a channel, then the channel identifier of the bound

channel will be used.

Rules for state transitions:

1. If the optional information element contains a Sending Complete information element,
then the CCS provider will not accept any subsequent CC INFORMATION REQ
primitives from the CCS user, nor will the CCS provider issue any subsequent
CC MORE INFO IND primitives to the CCS user.

CC SETUP IND

Parameters

cc call type
Specifies the type of call to be set up. For Q.931 conforming CCS providers,
the call type can be one of the call types listed under "Call Type and Flags"
in this addendum.

cc call flags
Specifies the options flags associated with the call. For Q.931 conforming CCS
providers, the call flags can be any of the flags listed under "Call Type and
Flags" in this addendum.

cc cdpn length
Specifies the length of the called party number. For Q.931 conforming CCS
providers, the format of the called party number is the format of the Called
Party Number parameter (without the parameter type or length octets) as
specified in Q.931.

cc cdpn offset
Specifies the offset of the called party number from the beginning of the block.

cc addr length
Specifies the length of the address which contains the channel identifier selected
for the call.

208 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

cc addr offset
Specifies the offset of the address from the beginning of the block.

Flags

Call flags can be any of the call flags supported by the CCS provider listed under
CC SETUP REQ in this addendum.

Rules

Rules for call type:

1. A CCS provider need not support all of the call types listed.

Rules for call flags:

1. The CC ITC WITH TONES AND ANNOUNCEMENTS flag may only be set when
the call type is unrestricted digital information. When the call type is not unrestricted
digital information, this flag should be ignored by the CCS provider.

Rules for called party number:

Rules for obtaining parameters from a SETUP message:

1. The mandatory (first) Bearer Capability information element in the SETUP message
will be translated into the call type and flags. The call type and flags correspond to the
Bearer Capability information element will contain the Information transfer capability,
rate, base and multiplier indicated under "Call Type" and "Flags".

2. The mandatory Channel Identification information element in the SETUP message will
be provided in the address parameter.

Rules for state transitions:

1. If the optional information element contains a Sending Complete information element,
then the CCS provider will not accept any subsequent CC MORE INFO REQ
primitives from the CCS user, nor will the CCS provider issue any subsequent
CC INFORMATION IND primitives to the CCS user.

CC SETUP RES

Parameters

Flags

Rules

CC SETUP CON

Parameters

Flags

Rules

2006-01-02 209

Addendum for Q.931 Conformance

CC CALL REATTEMPT IND

Rules

CC SETUP COMPLETE REQ

Parameters

Flags

Rules

CC SETUP COMPLETE IND

Parameters

Flags

Rules

Continuity Check Primitives

CC CONT CHECK REQ

Parameters

Flags

Rules

CC CONT TEST REQ

Parameters

Flags

Rules

CC CONT REPORT REQ

Parameters

Flags

Rules

Call Establishment Primitives

210 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC MORE INFO REQ

Parameters

Flags

Rules

CC MORE INFO IND

Parameters

Flags

Rules

CC INFORMATION REQ

Parameters

Flags

Rules

CC INFORMATION IND

Parameters

Flags

Rules

CC INFO TIMEOUT IND

Rules

Rules for issuing primitive:

1. If the Q.931 conforming CCS provider is expecting additional digits (it has previously
issued a CC MORE INFO REQ) and timer T302 expires, the CCS provider will issue
this primitive to the CCS user.

2. Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether
the address digits are sufficient and to issue a CC SETUP RES or CC REJECT REQ
primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conform-
ing to Q.764, if the CCS user receives a CC INFO TIMEOUT IND

CC PROCEEDING REQ

2006-01-02 211

Addendum for Q.931 Conformance

Parameters

Flags

Rules

CC PROCEEDING IND

Parameters

Flags

Rules

CC ALERTING REQ

Parameters

Flags

Rules

CC ALERTING IND

Parameters

Flags

Rules

CC PROGRESS REQ

Parameters

Flags

Rules

CC PROGRESS IND

Parameters

Flags

Rules

CC IBI REQ

212 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

Parameters

Flags

Rules

CC IBI IND

Parameters

Flags

Rules

Call Established Primitives

CC SUSPEND REQ

Parameters

cc flags Indicates the options associated with the suspend. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support suspend flags. This field should be coded
zero (0) by the CCS user and ignored by the CCS provider.

Rules

Rules for issuing primitive:

1. Only the CCS user on the User side of the Q.931 interface can issue a
CC SUSPEND REQ primitive. If the CCS provider is in Network mode and it
receives a CCS SUSPEND REQ, it should respond with a CC ERROR ACK with
error CCNOTSUPP.

CC SUSPEND IND

cc flags Indicates the options associated with the suspend. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support suspend flags. This field will be coded
zero (0) by the CCS provider and may be ignored by the CCS provider.

CC SUSPEND RES

Parameters

Rules

2006-01-02 213

Addendum for Q.931 Conformance

CC SUSPEND CON

Parameters

Rules

CC SUSPEND REJECT REQ

Parameters

cc cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the
cause values can be any of the values listed in "Cause Values" in this addendum
with the exception of CCS CAUS NONE.

Flags

Rules

CC SUSPEND REJECT IND

Parameters

cc cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the
cause values can be any of the values listed in "Cause Values" in this addendum
with the exception of CCS CAUS NONE.

Flags

Rules

CC RESUME REQ

Parameters

cc flags Indicates the options associated with the resume. See "Flags" below.

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded
zero (0) by the CCS user and ignored by the CCS provider.

Rules

CC RESUME IND

Parameters

cc flags Indicates the options associated with the resume. See "Flags" below.

214 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

Flags

Q.931 conforming CCS providers do not support resume flags. This field should be coded
zero (0) by the CCS user and ignored by the CCS provider.

Rules

CC RESUME RES

Parameters

Flags

Rules

CC RESUME CON

Parameters

Flags

Rules

CC RESUME REJECT REQ

Parameters

cc cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the
cause values can be any of the values listed in "Cause Values" in this addendum
with the exception of CCS CAUS NONE.

Flags

Rules

CC RESUME REJECT IND

cc cause Specifies the cause for the rejection. For Q.931 conforming CCS providers, the
cause values can be any of the values listed in "Cause Values" in this addendum
with the exception of CCS CAUS NONE.

Parameters

Flags

Rules

Call Termination Primitives

2006-01-02 215

Addendum for Q.931 Conformance

Cause Values

Cause values are used in the following primitives:
CC REJECT REQ, CC REJECT IND, CC DISCONNECT REQ, CC DISCONNECT IND,
CC RELEASE REQ, and CC RELEASE IND.

Parameters

cc cause Indicates the case for the rejection, disconnection, or release of a call. For Q.931
conforming CCS providers, the cause values can be any of the cause values listed
in Q.850 listed under "Cause Value" below.

Cause Value

Cause values are essentially opaque and cause values will be transferred directly to the
corresponding Q.931 message. The following cause values are defined for Q.931 conforming
CCS providers:

CC CAUS UNALLOCATED NUMBER
The called party number does not correspond to number allocated to a sub-
scriber or terminal.

CC CAUS NO ROUTE TO TRANSIT NETWORK
(no description)

CC CAUS NO ROUTE TO DESTINATION
(no description)

CC CAUS SEND SPECIAL INFO TONE
(no description)

CC CAUS MISDIALLED TRUNK PREFIX
(no description)

CC CAUS PREEMPTION
(no description)

CC CAUS PREEMPTION CCT RESERVED
(no description)

CC CAUS NORMAL CALL CLEARING
(no description)

CC CAUS USER BUSY
(no description)

CC CAUS NO USER RESPONDING
(no description)

CC CAUS NO ANSWER
(no description)

CC CAUS SUBSCRIBER ABSENT
(no description)

216 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC CAUS CALL REJECTED
(no description)

CC CAUS NUMBER CHANGED
(no description)

CC CAUS REDIRECT
(no description)

CC CAUS OUT OF ORDER
(no description)

CC CAUS ADDRESS INCOMPLETE
(no description)

CC CAUS FACILITY REJECTED
(no description)

CC CAUS NORMAL UNSPECIFIED
(no description)

CC CAUS NO CCT AVAILABLE
(no description)

CC CAUS NETWORK OUT OF ORDER
(no description)

CC CAUS TEMPORARY FAILURE
(no description)

CC CAUS SWITCHING EQUIP CONGESTION
(no description)

CC CAUS ACCESS INFO DISCARDED
(no description)

CC CAUS REQUESTED CCT UNAVAILABLE
(no description)

CC CAUS PRECEDENCE CALL BLOCKED
(no description)

CC CAUS RESOURCE UNAVAILABLE
(no description)

CC CAUS NOT SUBSCRIBED
(no description)

CC CAUS OGC BARRED WITHIN CUG
(no description)

CC CAUS ICC BARRED WITHIN CUG
(no description)

CC CAUS BC NOT AUTHORIZED
(no description)

2006-01-02 217

Addendum for Q.931 Conformance

CC CAUS BC NOT AVAILABLE
(no description)

CC CAUS INCONSISTENCY
(no description)

CC CAUS SERVICE OPTION NOT AVAILABLE
(no description)

CC CAUS BC NOT IMPLEMENTED
(no description)

CC CAUS FACILITY NOT IMPLEMENTED
(no description)

CC CAUS RESTRICTED BC ONLY
(no description)

CC CAUS SERIVCE OPTION NOT IMPLEMENTED
(no description)

CC CAUS USER NOT MEMBER OF CUG
(no description)

CC CAUS INCOMPATIBLE DESTINATION
(no description)

CC CAUS NON EXISTENT CUG
(no description)

CC CAUS INVALID TRANSIT NTWK SELECTION
(no description)

CC CAUS INVALID MESSAGE
(no description)

CC CAUS MESSAGE TYPE NOT IMPLEMENTED
(no description)

CC CAUS PARAMETER NOT IMPLEMENTED
(no description)

CC CAUS RECOVERY ON TIMER EXPIRY
(no description)

CC CAUS PARAMETER PASSED ON
(no description)

CC CAUS MESSAGE DISCARDED
(no description)

CC CAUS PROTOCOL ERROR
(no description)

CC CAUS INTERWORKING
(no description)

218 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

CC CAUS UNALLOCATED DEST NUMBER
(no description)

CC CAUS UNKNOWN BUSINESS GROUP
(no description)

CC CAUS EXCHANGE ROUTING ERROR
(no description)

CC CAUS MISROUTED CALL TO PORTED NUMBER 26
(no description)

CC CAUS LNP QOR NUMBER NOT FOUND
(no description)

CC CAUS PREEMPTION
(no description)

CC CAUS PRECEDENCE CALL BLOCKED
(no description)

CC CAUS CALL TYPE INCOMPATIBLE
(no description)

CC CAUS GROUP RESTRICTIONS
(no description)

Rules

In addition to these cause values, the CCS provider might support additional variant-specific
cause values.

CC REJECT REQ

Parameters

cc cause Specifies the cause value for the rejection. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in
this Addendum.

Flags

Rules

CC REJECT IND

Parameters

cc cause Specifies the cause value for the rejection. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in
this Addendum.

2006-01-02 219

Addendum for Q.931 Conformance

Flags

Rules

CC CALL FAILURE IND

Parameters

cc reason Specifies the reason for the failure indication. For Q.931 conforming CCS
providers, the reason will be one of the reasons listed under "Call Failure Rea-
sons" below.

cc cause Specifies the cause value for the error indication. For Q.931 conforming CCS
providers, the cause value will be one of the cause values listed under "Cause
Values" in this addendum.

Call Failure Reasons

ISUP CALL FAILURE ERROR
Indicates that the data link failed and recovered during overlap sending or
overlap receiving.

ISUP CALL FAILURE STATUS
Indicates that the CCS provider received a STATUS message from the peer
with a unrecoverable mismatch in state.

ISUP CALL FAILURE RESTART
Indicates that the CCS provider received or issued a RESTART message for
the channel.

Flags

Rules

CC DISCONNECT REQ

Parameters

cc cause Specifies the cause value for the disconnect. For Q.931 conforming CCS
providers, the cause value will be one of the cause values listed under "Cause
Values" in this addendum.

Rules

CC DISCONNECT IND

Parameters

cc cause Indicates the case values for the disconnect. For Q.931 conforming CCS
providers, the cause value wil be one of the cause values listed under "Cause
Value" in this addendum.

220 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.931 Conformance

Rules

CC RELEASE REQ

Parameters

cc cause Specifies the cause value for the release. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in
this addendum.

Rules

Rules for cause:

1. If the request is not the first step in the clearing phase (i.e, the call is not in state
CC WREQ REL), then the cause value must be specified. Otherwise, the cause value
should be coded CC CAUS NONE by the CCS user and ignored by the CCS provider.

CC RELEASE IND

Parameters

cc cause Specifies the cause value for the release. For Q.931 conforming CCS providers,
the cause value will be one of the cause values listed under "Cause Values" in
this addendum.

Rules

Rules for cause:

1. If the request is not the first step in the clearing phase (i.e, the call is not in state
CC WIND REL), then the cause value will be indicated by the CCS provider. Other-
wise, the cause value will be coded CC CAUS NONE by the CCS provider and should
be ignored by the CCS user.

CC RELEASE RES

Parameters

Rules

CC RELEASE CON

Parameters

Rules

Management Primitives

CC RESTART REQ

2006-01-02 221

Addendum for Q.931 Conformance

Parameters

cc flags

cc addr length
Specifies the length of the address which contains the interface identifier(s) and
optional channel identification for the interface(s) or channels to restart.

cc addr offset
Specifies the offset of the address from the beginning of the block.

Flags

Rules

CC RESTART CON

Parameters

cc flags

cc addr length
Specifies the length of the address which contains the interface identifier(s) and
optional channel identification for the interface(s) or channels to restart.

cc addr offset
Specifies the offset of the address from the beginning of the block.

Flags

Rules

Q.931 Header File Listing

222 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Addendum for Q.764 Conformance

This addendum describes the formats and rules that are specific to ISUP Q.764. The
addendum must be used along with the generic CCI as defined in the main document when
implementing a CCS provider that will be configured with the Q.764 call processing layer.

Primitives and Rules for Q.764 Conformance

The following are the rules that apply to the CCI primitives for Q.764 compatibility.

Common Primitive Parameters

Call Control Addresses

Format

The format of call control addresses is as follows:

Parameters

cc addr length
Specifies or indicates the length of the call control address. If a call control
address is not included in the primitive, this parameter must be coded zero (0).

cc addr offset
Specifies or indicates the offset of the address from the begining of the primitive.
If a call control address is not included with the primitive, this parameter must
be coded zero (0).

Address Format
The format of the call control addresses for Q.764 conforming CCS providers is as follows:

typedef struct isup_addr {

ulong scope; /* the scope of the identifier */

ulong id; /* the identifier within the scope */

ulong cic; /* circuit identification code within the scope */

} isup_addr_t;

#define ISUP_SCOPE_CT 1 /* circuit scope */

#define ISUP_SCOPE_CG 2 /* circuit group scope */

#define ISUP_SCOPE_TG 3 /* trunk group scope */

#define ISUP_SCOPE_SR 4 /* signalling relation scope */

#define ISUP_SCOPE_SP 5 /* signalling point scope */

#define ISUP_SCOPE_DF 6 /* default scope */

Address Fields

scope Specifies or indicates the scope of the call control address. See "Scope" below.

id Specifies or indicates the identifier within the scope.

cic Specifies or indicates the Circuit Identification Code significant within the
scope.

2006-01-02 223

Addendum for Q.764 Conformance

Scope

The scope of the address is one of the following:

ISUP SCOPE CT
Specifies or indicates that the scope of the call control address is a ISUP cir-
cuit. The identifier within the scope is an identifier which uniquely identifies
a circuit to the CCS provider. Circuit scope addresses may also be used to
specify or indicate circuit groups, trunk groups, signalling relations and sig-
nalling points. When used in an indication or confirmation primitive, the CCS
provider includes the Circuit Identification Code associated with the circuit in
the address.
For multi-rate calls where multiple circuits are involved, the circuit scoped
address specifies the lowest numerical Circuit Identification Code in the group
of circuits.

ISUP SCOPE CG
Specifies or indicates that the scope of the call control address is a ISUP circuit
group. The identifier within the scope is an identifier which uniquely identifies
a circuit group to the CCS provider. Circuit group scope addresses may also
be used to specify or indicate signalling relations and signalling points. When
used in an indication or confirmation primitive, the CCS provider includes the
Circuit Identification Code associated with the circuit group (lowest numerical
value CIC in the circuit group range).

ISUP SCOPE TG
Specifies or indicates that the scope of the call control address is a ISUP trunk
group. The identifier within the scope is an identifier which uniquely identifies
a trunk group to the CCS provider. Trunk group scope addresses may also be
used to specify or indicate circuits, signalling relations and signalling points.
The Circuit Identification Code must be used to specify a circuit within the
trunk group.

ISUP SCOPE SR
Specifies or indicates that the scope of the call control address is a ISUP sig-
nalling relation. The identifier within the scope is an identifier which uniquely
identifies a signalling relation to the CCS provider. Signalling relation scope
addresses may also be used to specify or indicate circuits and signalling points.
The Circuit Identification Code must be used to sepcify a circuit (equipped or
unequipped) within the signalling relation.

ISUP SCOPE SP
Specifies or indicates that the scope of the call control address is a ISUP sig-
nalling point. The identifier within the scope is an identifier which uniquely
identifies a local signalling point to the CCS provider. Signalling point scope
addresses may only indicate local signalling points. The Circuit Identification
Code is unused and should be ignored by the CCS user and will be coded zero
(0) by the CCS provider.

224 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

ISUP SCOPE DF
Specifies or indicates that the scope of the call control address is the default
scope. The identifier within the scope and Circuit Identification Code are un-
used and should be ignored by the CCS user and will be coded zero (0) by the
CCS provider.

Rules

Rules for scope:

1. In primitives in which the address parameter occurs, the scope field setting indicates
the scope of the address parameter.

2. Only one call control address can be specified with a signle scope.

3. Not all scopes are necessarily supported by all primitives. See the particular primitive
in this addendum.

Rules for addresses:

1. The address contained in the primitive contains the following:

• A scope.

• An identifier within the scope or zero (0).

• A circuit identification code within the scope or zero (0).

2. If the scope of the address is ISUP SCOPE DF, then both the identifier and circuit
identification code fields should be coded zero (0) and will be ignored by the CCS user
or provider.

3. If the scope of the address is ISUP SCOPE SP, then the circuit identification code
field should be coded zero (0) and will be ignored by the CCS user or provider.

4. In all other scopes, the circuit identification code is optional and is coded zero (0) if
unused.

Optional Parameters

Format

The format of the optional parameters for Q.764 conforming CCS providers is as follows:

Parameters

cc opt length
Specifies or indicates the length of the optional parameters associated with the
primitive. For Q.764 conforming CCS providers, the format of the optional
parameters is the format of the Optional Parameters list (without the pointer
or End of Optional Parameters octets) as specified in Q.763.

cc opt offset
Specifies the offset of the optional parameters from the beginning of the block.

2006-01-02 225

Addendum for Q.764 Conformance

Rules

Rules for optional parameters:

1. The optional parameters provided by the CCS user may be checked for syntax by the
CCS provider. If the CCS provider discovers a syntax error in the format of the optional
parameters, the CCS provider should respond with a CC ERROR ACK primitive with
error CCBADOPT.

2. For some primitives, specific optional parameters might be interpreted by the CCS
provider and alter the function of some primitives. See the specific primitive descrip-
tions later in this addendum.

3. Except for optional parameters interpreted by the CCS provider as specified later in this
addendum, the optional parameters are treated as opaque and the optional parameter
list only is checked for syntax. Opaque parameters will be passed to the ISUP message
without examination by the CCS provider.

4. To perform specific functions, additional optional parameters may be added to ISUP
messages by the CCS provider.

5. To perform specific functions, optional parameters may be modified by the CCS
provider before being added to ISUP messages.

Local Management Primitives

CC INFO ACK

Parameters

Flags

Rules

CC BIND REQ

Parameters

cc addr length
Indicates the length of the address to bind.

cc addr offset
Indicates the offset of the address to bind from the beginning of the block.

cc setup ind
Indicates the maximum number of setup (or continuity check) indications that
will be outstanding for the listening stream.

cc bind flags
Indicates the options assocated with the bind. The bind flags can be as follows:

CC DEFAULT LISTENER
When set, this flag specifies that this stream is the "default listener
stream." This stream is used to pass setup indications (or continuity

226 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

check requests) for all incoming calls that contain protocol identi-
fiers that are not bound to any other listener, or when a listener
stream with cc setup ind value of greater than zero is not found.
Also, the default listener will receive all incoming call indications
that contain no user data (i.e., test calls) and all maintenance in-
dications (i.e., CC MAINT IND). Only one default listener stream
is allowed per occurrence of CCI. An attempt to bind a default lis-
tener stream when one is already bound should result in an error
(of type CCADDRBUSY).

CC TOKEN REQUEST
When set, this flag specifies to the CCS provider that the CCS
user has requested that a "token" be assigned to the stream (to be
used in the call response message), and the token value be returned
to the CCS user via the CC BIND ACK primitive. The token
assigned by the CCS provider can then be used by the CCS user in
a subsequent CC SETUP RES primitive to identify the stream on
which the call is to be established.

CC MANAGEMENT
When set, this flag specifies to the CCS provider that this stream
is to be used for circuit management indications for the specified
addresses.

CC TEST
When set, this flag specifies to the CCS provider that this stream is
to be used for continuity and test call indications for the specified
addresses.

CC MAINTENANCE
When set, this flag specifies to the CCS provider that this stream is
to be used for maintenance indications for the specified addresses.

Rules

Rules for address specification:

1. The address contained in the primitive as indicated by cc addr length and
cc addr offset parameters. The address can be of any ISUP scope.

2. If the CC DEFAULT LISTENER flag is set, the parameters cc addr length and
cc addr offset should be coded zero, and will be ignored by the CCS provider.

Rules for setup indications:

1. If the number of setup indications is non-zero, the stream is bound as a listening stream.
Listening streams will receive all calls, test calls, and continuity tests that are incoming
on the address bound.
• If the address bound is of scope ISUP SCOPE CT, only incoming calls on the

bound circuit will be delivered to the listening stream.

2006-01-02 227

Addendum for Q.764 Conformance

• If the address bound is of scope ISUP SCOPE CG, only incoming calls on the
bound circuit group will be delivered to the listening stream.

• If the address bound is of scope ISUP SCOPE TG, only incoming calls on the
bound trunk group will be delivered to the listening stream (this is the normal
case).

• If the address bound is of scope ISUP SCOPE SR, only incoming calls on the
bound signalling relation (from the associated remote point code) will be delivered
to the listening stream.

• If the address bound is of scope ISUP SCOPE SP, only incoming calls on the
bound local signalling point will be delivered to the listening stream.

• If the address bound is of scope ISUP SCOPE DF, all incoming calls will be
delivered to the listening stream.

• Streams bound at one scope takes precedence over a stream bound at another scope
in the order: circuit, circuit group, trunk group, signalling relation, signalling point
and default scope.

2. Once a stream has successfully bound as a listening stream, it should be prepared to
receive incoming calls, test calls and continuity tests.

Rules for bind flags:

1. For Q.764 conformance, the CC DEFAULT LISTENER will receive all incoming calls,
test calls, continuity tests, circuit management indications and maintenance indications
that have no other listening stream. There can only be one stream bound with the
CC DEFAULT LISTENER flag set.

2. Only one of CC DEFAULT LISTENER, CC MANAGEMENT, CC TEST and
CC MAINTENANCE may be set.

3. Streams bound with the CC MANAGEMENT flag set will receive only circuit man-
agement indications and will not receive any calls.

4. Streams bound with the CC TEST flag set will receive only continuity test and test
call indications and will not receive normal calls, circuit management or maintenance
indications.

5. Streams bound with the CC MAINTENANCE flag set will receive only maintenance
indications and will not receive any circuit management indications or calls.

CC BIND ACK

Parameters

cc addr length
Indicates the length of the address to bind.

cc addr offset
Indicates the offset of the address to bind from the beginning of the block.

cc setup ind
Indicates the maximum number of setup (or continuity check) indications that
will be outstanding for the listening stream.

228 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Flags

See CC BIND REQ in this Addendum.

Rules

See CC BIND REQ in this Addendum.

CC OPTMGMT REQ

Parameters

Flags

Rules

Call Setup Primitives

CC SETUP REQ

Parameters

cc call type
Specifies the type of call to be set up. Q.764 conforming CCS providers must
support the following call types:

CC CALL TYPE SPEECH
The call type is speech. This call type corresponds to a Q.764
transmission medium requirement of Speech.

CC CALL TYPE 64KBS UNRESTRICTED
The call type is 64 kbit/s unrestricted digital information. This
call type corresponds to a Q.764 transmission medium requirement
of 64 kbit/s Unrestricted Digital Information.

CC CALL TYPE 3 1kHZ AUDIO
The call type is 3.1 kHz audio. This call type corresponds to a
Q.764 transmission medium requirement of 3.1 kHz Audio.

CC CALL TYPE 64KBS PREFERRED
The call type is 64 kbit/s preferred. This call type corresponds to
a Q.764 transmission medium requirement of 64 kbit/s Preferred.

CC CALL TYPE 2x64KBS UNRESTRICTED
The call type is 2 x 64 kbit/s unrestricted digital information. This
call type corresponds to a Q.764 transmission medium requirement
of 2 x 64 kbit/s Unrestricted Digital Information.

CC CALL TYPE 384KBS UNRESTRICTED
The call type is 384 kbit/s unrestricted digital information. This
call type corresponds to a Q.764 transmission medium requirement
of 384 kbit/s Unrestricted Digital Information.

2006-01-02 229

Addendum for Q.764 Conformance

CC CALL TYPE 1536KBS UNRESTRICTED
The call type is 1536 kbit/s unrestricted digital information. This
call type corresponds to a Q.764 transmission medium requirement
of 1536 kbit/s Unrestricted Digital Information.

CC CALL TYPE 1920KBS UNRESTRICTED
The call type is 1920 kbit/s unrestricted digital information. This
call type corresponds to a Q.764 transmission medium requirement
of 1920 kbit/s Unrestricted Digital Information.

cc user ref
Specifies the CCS user call reference to be associated with the call setup request.
The CCS provider will use this user call reference in any indications given before
the CC SETUP CON primitive is issued.

cc call flags
Specifies the options associated with the call. Q.764 conforming CCS providers
must support the following flags:
The following flags correspond to bits in the Nature of Connection Indicators
parameter of Q.763:

ISUP NCI ONE SATELLITE CCT
ISUP NCI TWO SATELLITE CCT

When one of these flags is set it indicates that either one or two
satellite circuits are present in the connection. Otherwise, it indi-
cates that no satellite circuits are present in the connection.

ISUP NCI CONT CHECK REQUIRED
ISUP NCI CONT CHECK PREVIOUS

When one of these flags is set it indicates that either a continuity
check is required on the connection, or that a continuity check was
performed on a previous connection. Otherwise, it indicates that a
continuity check is not required on the connection.

ISUP NCI OG ECHO CONTROL DEVICE
When set it indicates that an outgoing half echo control device is in-
cluded on the connection. Otherwise, it indicates that no outgoing
half echo control device is included on the connection.

The following flags correspond to bits in the Forward Call Indicators parameter
of Q.763:

ISUP FCI INTERNATIONAL CALL
When this flag is set, the call is to be treated as an international
call. Otherwise, the call is to be treated as a national call.

ISUP FCI PASS ALONG E2E METHOD AVAILABLE
ISUP FCI SCCP E2E METHOD AVAILABLE

When one of these flags is set, either the pass along end-to-end
method is available or the SCCP end-to-end method is available.

230 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Otherwise, no end-to-end method is available and only link-by-link
method is available.

ISUP FCI INTERWORKING ENCOUNTERED
When this flag is set, interworking has been encountered on the
call. Otherwise, no interworking has been encountered on the call.

ISUP FCI E2E INFORMATION AVAILABLE
When this flag is set, end-to-end information is now available. Oth-
erwise, no end-to-end information is available.

ISUP FCI ISDN USER PART ALL THE WAY
When this flag is set, ISDN User Part has been used all the way on
the call. Otherwise, ISDN User Part has not been used all the way.

ISUP FCI ORIGINATING ACCESS ISDN
When this flag is set, the originating access is ISDN. Otherwise,
the originating access is non-ISDN.

ISUP FCI SCCP CLNS METHOD AVAILABLE
ISUP FCI SCCP CONS METHOD AVAILABLE
ISUP FCI SCCP ALL METHODS AVAILABLE

When one of these flags is set, either the connectionless SCCP
method is available, the connection oriented SCCP method is avail-
able, or both methods are available. Otherwise, no SCCP method
is indicated as available.

cc cdpn length
Specifies the length of the called party number. For Q.764 conforming CCS
providers, the format of the called party number is the format of the Called
Party Number parameter (without the parameter type or length octets) as
specified in Q.763.

cc cdpn offset
Specifies the offset of the called party number from the beginning of the block.

Rules

Rules for call reference:

1. If the ISUP user wishes to setup multiple outgoing calls on the same stream, the
ISUP user associates a user call reference with each of the setup requests so that the
indication, confirmation and acknowledgement primitives can be associated with the
specific call setup request.

2. User call references are only necessary if multiple outgoing calls are to setup at the
same time.

3. User call references only need by valid until a setup confirmation, call reattempt indi-
cation, release indication or call failure indication has been received in response to the
setup request. A setup confirmation will contain a CCS provider call reference which
can be used to distinguish the call from other calls to the CCS provider.

2006-01-02 231

Addendum for Q.764 Conformance

Rules for call type:

1. All Q.764 conforming CCS provider must support the following call types:
CC CALL TYPE SPEECH, CC CALL TYPE 64KBS UNRESTRICTED,
CC CALL TYPE 3 1kHZ AUDIO, and CC CALL TYPE 64KBS PREFERRED.

2. Support for other call types is optional and implementation-specific.

Rules for flags:

1. Q.764 conforming CCS providers must support all of the flags listed above.
2. Only one of the following flags may be set:

ISUP NCI ONE SATELLITE and ISUP NCI TWO SATELLITE.
3. Only one of the following flags may be set:

ISUP NCI CONT CHECK REQUIRED and ISUP NCI CONT CHECK PREVIOUS.
4. Only one of the following flags may be set:

ISUP FCI PASS ALONG E2E METHOD AVAILABLE and ISUP FCI SCCP E2E METHOD AVAILABLE.
5. Only one of the following flags may be set, and only if ISUP FCI SCCP E2E METHOD AVAILABLE

is also set:
ISUP FCI SCCP CLNS METHOD AVAILABLE, ISUP FCI SCCP CONS METHOD AVAILABLE
and ISUP FCI SCCP ALL METHODS AVAILABLE.

CC SETUP IND

Parameters

cc call ref Indicates the CCS provider-assigned call reference associated with the call.

cc call type
Indicates the type of call to be set up. For Q.764 conforming CCS providers,
the call type can be one of the call types listed in this addendum under
CC SETUP REQ.

cc call flags
Indicates the options associated with the call. Q.764 conforming CCS providers
indicate the flags listed in this addendum under CC SETUP REQ.

cc addr length
Indicates the length of the call control address (circuit(s)) upon which the call
setup is indicated.

cc addr offset
Indicates the offset of the call control address from the start of the block.

cc cdpn length
Indicates the length of the called party number. For Q.764 conforming CCS
providers, the format of the called party number is the format of the Called
Party Number parameter (without the parameter type or length octets) as
specified in Q.763.

232 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

cc cdpn offset
Indicates the offset of the called party number from the beginning of the block.

cc opt length
Indicates the length of the optional parameters associated with the IAM, ex-
cluding the end of optional parameters tag.

cc opt offset
Indicates the offset of the options from the beginning of the block.

Rules

Rules for call reference:

1. The ISUP provider will indicate a unique call reference to the CCS user which is used
to associate response and request primitives with the call setup indication.

2. Provider call references will always be indicated.
3. Provider call references are only valid until a call failure or release indication has been

issued by the CCS provider.
4. Provider call references are only valid for streams upon which the CC SETUP IND

is issued, or for streams upon which the call was accepted by the CCS user with a
CC SETUP RES primitive.

5. Provider call references are unique across the provider.

Rules for call type:

1. The rules for call type in section CC SETUP REQ in this addendum also apply to the
CC SETUP IND. All Q.764 conforming CCS providers must support the following call
types:
CC CALL TYPE SPEECH, CC CALL TYPE 64KBS UNRESTRICTED,
CC CALL TYPE 3 1kHZ AUDIO, and CC CALL TYPE 64KBS PREFERRED.

2. Support for additional call types is optional and implementation-specific.

Rules for setup flags:

1. The rules for setup flags in section CC SETUP REQ in this addendum also apply to
the CC SETUP IND.

Rules for addresses:

1. Call control addresses in the CC SETUP IND are of scope ISUP SCOPE CT and
identify the circuit(s) upon which the call setup is indicated.

2. For multi-rate calls, the call control address indicates the base circuit (numerically
lowest Circuit Identification Code) of the multi-rate call.

CC SETUP RES

Parameters

cc call ref Specifies the call reference of the CC SETUP IND to which the CCS user is
responding.

2006-01-02 233

Addendum for Q.764 Conformance

cc token value
Specifies the token of a stream upon which to accept the call setup.

Rules

Rules for call reference:

1. The call reference specified by the CCS User must be a call reference which was pre-
viously indicated by the CCS provider in an outstanding CC SETUP IND. Otherwise
the CCS provider will respond with a CC ERROR ACK primitive with error CCBAD-
CLR.

Rules for token value:

1. If the token is the token value of the stream upon which the corresponding
CC SETUP IND was received, or zero (0), then the call setup will be accepted on the
stream upon which the CC SETUP IND was received.

2. If the token is non-zero and different from the listening stream, the call setup will be
accepted on the specified stream.

CC SETUP CON

Parameters

cc user ref
Indicates the CCS user call reference that was specified in the
CC SETUP REQ. This call reference is used by the CCS user to associated
the CC SETUP CON with an outstanding CC SETUP REQ primitive.

cc call ref Indicates the CCS provider call reference that is to be associated with the call.
This call reference is used by the CCS provider to identify the call and is to be
used by the CCS user in all subsequent primitives referencing the call.

cc addr length
Indicates the length of the identifier of the circuit upon which the call setup is
confirmed.

cc addr offset
Indicates the offset of the identifier from the start of the block.

Rules

Rules for call reference:

1. The CCS user call reference will be the same as the call reference provided by the user
in the CC SETUP REQ primitive.

2. The CCS provider call reference will follow the rules of the CC SETUP IND in this
Addendum.

Rules for addresses:

1. The call control address indicated in the CC SETUP CON is a ISUP SCOPE CT (cir-
cuit scoped) call control address which identifies the circuit(s) upon which the outgoing
call will be connected.

234 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

2. For multi-rate calls, the call control address specifies the base circuit (lowest numerical
Circuit Identification Code) for the multi-rate call.

CC CALL REATTEMPT IND

Parameters

cc user ref
Indicates the CCS user call reference for the call. This reference identifies the
corresponding CC SETUP REQ primitives to the CCS user for which the call
reattempt need be performed.

cc reason Indicates the reason for the reattempt. The reason can be one of the following
values:

ISUP REATTEMPT DUAL SEIZURE
Indicates that the circuit was seized by a controlling exchange dur-
ing the initial setup of the call (i.e, before any backward message
was received).

ISUP REATTEMPT RESET
Indicates that the circuit was reset during the initial setup of the
call (i.e, before any backward message was received).

ISUP REATTEMPT BLOCKING
Indicates that the circuit was blocked during the initial setup of the
call (i.e, before any backward message was received).

ISUP REATTEMPT T24 TIMEOUT
Indicates that COT failure occurred on the circuit (due to T24
timeout).

ISUP REATTEMPT UNEXPECTED
Indicates that an unexpected message was received for the call dur-
ing the initial setup of the call (i.e, before any backward message
was received).

ISUP REATTEMPT COT FAILURE
Indicates that COT failed on the circuit (due to transmission of
COT message indicating failure).

ISUP REATTEMPT CIRCUIT BUSY
Indicates that the specified circuit was busy.

Rules

Rules for call reference:

1. The CCS user call reference is a call reference associated with an outstanding
CC SETUP REQ primitive to which the CCS provider is responding.

Rules for reason:

2006-01-02 235

Addendum for Q.764 Conformance

1. The Q.764 conforming CCS provider will provide one of the reasons listed above.
2. The ISUP REATTEMPT DUAL SEIZURE reason will only be indicated if the CCS

user represents a non-controlling exchange for the associated trunk group.
3. The ISUP REATTEMPT T24 TIMEOUT reason will only be indicated if the outgoing

call includes a continuity test and a positive CC CONT REPORT REQ was not issued
to the CCS provider by a test stream within T24.

4. The ISUP REATTEMPT COT FAILURE reason will only be indicated if the outgoing
call includes a continuity test and a negative CC CONT REPORT REQ was issued
to the CCS provider by a test stream within T24.

5. The ISUP REATTEMPT CIRCUIT BUSY reason will only be indicated if the stream
issuing the CC SETUP REQ primitive is bound to a circuit (ISUP SCOPE CT) and
the circuit is busy with another call.

CC SETUP COMPLETE REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS
providers conforming to Q.764, if a CCS provider conforming to Q.764 receives a
CC SETUP COMPLETE REQ for a call reference in the CCS ANSWERED state
(CCS ICC ANSWERED), the CCS provider will ignore the primitive.

CC SETUP COMPLETE IND

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conform-
ing to Q.764, if a CCS provider conforming to Q.764 issues a CC SETUP COMPLETE IND
for a call reference in the CCS ANSWERED state, the CCS user may ignore the primitive.

Continuity Check Phase

CC CONT CHECK REQ

Parameters

cc addr length
Specifies the length of the circuit test address (circuit) upon which the conti-
nuity check is to be performed.

cc addr offset
Specifies the offset of the circuit test address from the start of the block.

Rules

Rules for addresses:

1. The parameter cc addr length cannot be zero: i.e, an address must be provided or the
CCS provider should respond with CC ERROR ACK with an error of CCNOADDR.

236 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

2. The address provided must be of scope ISUP SCOPE CT and must provide the iden-
tifier of the circuit upon which the CCS user is requesting a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response
with CC ERROR ACK and an error of CCBADADDR.

CC CONT CHECK IND

Parameters

cc call ref Indicates the CCS provider call reference.

cc addr length
Indicates the length of the identifier of the circuit upon which the continuity
check is to be performed.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

Rules for call reference:

1.

Rules for addresses:

1. The parameter cc addr length cannot be zero: i.e, an address must be provided or the
CCS provider should respond with CC ERROR ACK with an error of CCNOADDR.

2. The address provided must be of scope ISUP SCOPE CT and must provide the iden-
tifier of the circuit upon which the CCS user is requesting a continuity check.

3. The specified circuit test address (circuit identifier) must be equipped else the CCS
provider should response with CC ERROR ACK and an error of CCBADADDR.

CC CONT TEST REQ

This primitive is only supported when the Loop Back Acknowledgement is used as a na-
tional option under Q.764. For compatibility with CCS providers not supporting the na-
tional option, if such a CCS provider receives a CC CONT TEST REQ while waiting for
a CC CONT REPORT IND, the CCS provider should silently discard the primitive.

Parameters

cc call ref Specifies the CCS provider call reference.

cc addr length
Indicates the length of the call control address (ISUP SCOPE CT circuit iden-
tifier) upon which the continuity check is to be performed.

cc addr offset
Indicates the offset of the call control address from the start of the block.

2006-01-02 237

Addendum for Q.764 Conformance

Rules

Rules for addresses:

1. The parameter cc addr length cannot be zero: i.e, an address must be provided or the
CCS provider should respond with CC ERROR ACK with an error of CCNOADDR.

2. The address provided must be the identifier of the circuit upon which the CCS user is
requesting a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response
with CC ERROR ACK and an error of CCBADADDR.

CC CONT TEST IND

This primitive is only supported when the Loop Back Acknowledgement is used as a na-
tional option under Q.764. For compatibility with CCS providers not supporting the na-
tional option, such a CCS provider will issue a CC CONT TEST IND in response to a
CC CONT CHECK REQ following the CC OK ACK.

Parameters

cc call ref Specifies the CCS provider call reference.

cc addr length
Specifies the length of the identifier of the circuit upon which the continuity
check is to be performed.

cc addr offset
Specifies the offset of the address from the start of the block.

Rules

Rules for call reference:

1. The CCS provider assigned call reference is used to associate an outstanding continuity
test indication (CC CONT CHECK IND or call setup indication CC SETUP IND
including a continuity test (ISUP NCI CONT CHECK REQUIRED).

Rules for addresses:

1. The parameter cc addr length cannot be zero: i.e, an address must be provided or the
CCS provider should respond with CC ERROR ACK with an error of CCNOADDR.

2. The address provided must be the identifier of the circuit upon which the CCS user is
requesting a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response
with CC ERROR ACK and an error of CCBADADDR.

CC CONT REPORT REQ

Parameters

cc user ref
Specifies the CCS User assigned call reference.

238 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

cc call ref Specifies the CCS Provider assigned call reference.

cc result Specifies the result of the continuity test, whether success or failure. For Q.764
conforming CCS provider, the result parameter can be one of the following
values:

ISUP COT SUCCESS
Indicates that the continuity check test was successful.

ISUP COT FAILURE
Indicates that the continuity check test failed.

cc addr length
Specifies the length of the identifier of the circuit upon which the continuity
check is to be performed.

cc addr offset
Specifies the offset of the address from the start of the block.

Rules

Rules for addresses:

1. The parameter cc addr length cannot be zero: i.e, an address must be provided or the
CCS provider should respond with CC ERROR ACK with an error of CCNOADDR.

2. The address provided must be the identifier of the circuit upon which the CCS user is
requesting a continuity check.

3. The specified circuit identifier must be equipped else the CCS provider should response
with CC ERROR ACK and an error of CCBADADDR.

CC CONT REPORT IND

Parameters

cc call ref Indicates the CCS provider assigned call reference.

cc result Indicates the result of the continuity test, whether success or failure. For Q.764
conforming CCS provider, the result parameter can be one of the following
values:

ISUP COT SUCCESS
Indicates that the continuity check test was successful.

ISUP COT FAILURE
Indicates that the continuity check test failed.

Rules

Rules for call reference:

1.

Call Establishment Primitives

2006-01-02 239

Addendum for Q.764 Conformance

CC MORE INFO REQ

Rules

Rules for issuing primitive:

1. This primitive is not directly supported by Q.764 conforming CCS providers. For com-
patibility with Q.931 conforming CCS providers, if the Q.764 conforming CCS provider
receives a CC MORE INFO REQ in state CCS WRES SIND, it should invoke any in-
terworking procedures and silently discard the primitive.

CC MORE INFO IND

Rules

Rules for issuing primitive:

1. This primitive may optionally be issued by a Q.764 conforming CCS provider in the
overlap signalling mode, if the appropriate timer has expired and the CCS provider
has not received an indication that the provided address is complete.

CC INFORMATION REQ

Parameters

cc call ref Specifies the CCS provider assigned call reference for the call.

cc subn length
Specifies the length of the subsequent number. For Q.764 conforming CCS
providers, the format of the called party address is the format of the Subsequent
Number parameter (without the parameter type or length octets) as specified
in Q.763.

cc subn offset
Specifies the offset of the subsequent number from the beginning of the block.

Rules

Rules for issuing primitive:

1. This primitive will only be issued before any CC PROCEEDING IND,
CC ALERTING IND, CC PROGRESS IND, or CC IBI IND has occurred on the
stream while in the CCS WCON SREQ state. If not, the CCS provider should
respond with a CC ERROR ACK primitive with error CCOUTSTATE.

2. This primitive must not be issued if the preceding CC SETUP REQ contained a called
party address which was complete (i.e, contains a ST code following the digits). If it is,
the CCS provider should respond with a CC ERROR ACK with error CCBADADDR.

3. This primitive must not be issued if the trunk group or circuit to which the stream is
bound is configured for en bloc operation. If it is, the CCS provider should respond
with a CC ERROR ACK with error CCNOTSUPP.

CC INFORMATION IND

240 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Parameters

cc call ref Indicates the CCS provider assigned call reference.

cc subn length
Indicates the length of the subsequent number. For Q.764 conforming CCS
providers, the format of the subsequent number is the format of the Subsequent
Number parameter (without the parameter type or length octets) as specified
in Q.763.

cc subn offset
Indicates the offset of the subsequent number from the beginning of the block.

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any
CC PROCEEDING REQ, CC ALERTING REQ, CC PROGRESS REQ, or
CC IBI REQ has been received in state CCS WCON SREQ.

2. This primitive will not be issued by the CCS provider if the preceding CC SETUP REQ
contained a complete called party address (i.e, contains an ST code following the digits),
or if the trunk group or circuit is configured for en bloc operation.

CC INFO TIMEOUT IND

Rules

Rules for issuing primitive:

1. If the Q.764 conforming CCS provider encounters interworking on a call and is not
expecting an address complete message, and timer T11 expires, the CCS provider will
issue this primitive to the CCS user.

2. Upon receipt of this primitive, it is the CCS user’s responsibility to determine whether
the address digits are sufficient and to issue a CC SETUP RES or CC REJECT REQ
primitive.

For compatibility between CCS providers conforming to Q.931 and CCS providers conform-
ing to Q.764, if the CCS user receives a CC INFO TIMEOUT IND

CC PROCEEDING REQ

Parameters

cc flags Specifies the options associated with the call. Indicates the flags associated
with the primitive. For Q.764 conforming CCS providers, call flags can be an
of the following: Q.764 conforming CCS provider must support the following
flags:
The following flags correspond to bits in the Backward Call Indicators param-
eter of Q.763:

2006-01-02 241

Addendum for Q.764 Conformance

ISUP BCI NO CHARGE
ISUP BCI CHARGE

When one of these flags is set, it indicates that the call is not to be
charged, or the call is to be charged. Otherwise, it indicates that
there is no indication with regard to charging.

ISUP BCI SUBSCRIBER FREE
ISUP BCI CONNECT FREE

When one of these flags is set, it indicates that the terminating
subscriber is free, or that the connection is free. Otherwise, no
indication is given.

ISUP BCI ORDINARY SUBSCRIBER
ISUP BCI PAYPHONE

When one of these flags is set, it indicates that the call has termi-
nated to an ordinary subscriber, or that the call has terminated to
a pay phone.

ISUP BCI PASS ALONG E2E METHOD AVAILABLE
ISUP BCI SCCP E2E METHOD AVAILABLE

When one of these flags is set, either the pass along end-to-end
method is available, or the SCCP end-to-end method is available.
Otherwise, no end-to-end method is available and only link-by-link
method is available.

ISUP BCI INTERWORKING ENCOUNTERED
When this flag is set, interworking has been encountered on the
call. Otherwise, to interworking has been encountered on the call.

ISUP BCI E2E INFORMATION AVAILABLE
When this flag is set, end-to-end information is now available. Oth-
erwise, no end-to-end information is available.

ISUP BCI ISDN USER PART ALL THE WAY
When this flag is set, ISDN User Part has been used all the way on
the call, Otherwise, ISDN User Part has not be used all the way.

ISUP BCI HOLDING REQUESTED
When this flag is set, holding is requested. Otherwise, holding is
not requested.

ISUP BCI TERMINATING ACCESS ISDN
When this flag is set, the terminating access is ISDN. Otherwise,
the terminating access is non-ISDN.

ISUP BCI IC ECHO CONTROL DEVICE
When set, this flag indicates that an incoming half echo control
device is included on the connection. Otherwise, it indicates that
no incoming half echo control device is included in the connection.

242 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

ISUP BCI SCCP CLNS METHOD AVAILABLE
ISUP BCI SCCP CONS METHOD AVAILABLE
ISUP BCI SCCP ALL METHODS AVAILABLE

When one of these flags is set, either the connectionless SCCP
method is available, the connection oriented SCCP method is avail-
able, or both methods are available. Otherwise, no SCCP method
is indicated as available.

Rules

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC ALERTING REQ,
CC PROGRESS REQ or CC IBI REQ has been issued while in state
CCS WRES SIND.

CC PROCEEDING IND

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any
CC ALERTING IND, CC PROGRESS IND or CC IBI IND has been issued
while in state CCS WCON SREQ.

CC ALERTING REQ

Rules

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC PROGRESS REQ
or CC IBI REQ has been issued while in state CCS WRES SIND.

CC ALERTING IND

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any CC PROGRESS IND
or CC IBI IND has been issued while in state CCS WCON SREQ.

CC PROGRESS REQ

Parameters

cc event Indicates the progress event. For Q.764 conforming CCS providers, this can be
one of the following:

2006-01-02 243

Addendum for Q.764 Conformance

ISUP EVNT ALERTING
Indicates that the called party is being alerted. This event is in-
dicated only if a CC CALL PROCEEDING IND primitive has al-
ready been received.

ISUP EVNT PROGRESS
Indicates that the call is progressing with the specified optional
parameters.

ISUP EVNT IBI
This event is indicated only by the CC IBI IND primitive and will
not appear here.

ISUP EVNT CALL FORWARDED ON BUSY
This event indicates that the call has been forwarded on busy and
the optional parameters (if any) contain the attributes of the for-
warding (e.g., redirecting number, etc.).

ISUP EVNT CALL FORWARDED ON NO ANSWER
This event indicates that the call has been forwarded on no answer
and the optional parameters (if any) contain the attributes of the
forwarding (e.g., redirecting number, etc.).

ISUP EVNT CALL FORWARDED UNCONDITIONAL
This event indicates that the call has been forwarded uncondition-
ally and the optional parameters (if any) contain the attributes of
the forwarding (e.g., redirecting number, etc.).

cc flags Indicates the options flags.

ISUP EVNT PRESENTATION RESTRICTED
When set, this flag indicates that the event indication is not to be
presented to the caller. Otherwise, the event may be presented to
the caller.

Rules

Rules for issuing primitive:

1. This primitive can only be issued by the CCS user before any CC IBI REQ has been
issued while in state CCS WRES SIND.

Rules for progress event:

1. Q.764 conforming CCS providers must support the complete list of progress events
listed above.

2. When this primitive is issued with the event ISUP EVNT ALERTING, it must follow
the rules for the primitive CC ALERTING REQ.

3. When this primitive is issued with the event ISUP EVNT IBI, it must follow the rules
for the primitive CC IBI REQ.

Rules for progress flags:

244 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

1. The flag ISUP EVNT PRESENTATION RESTRICTED cannot be set when the event
is ISUP EVNT ALERTING, ISUP EVNT PROGRESS or ISUP EVNT IBI.

CC PROGRESS IND

Parameters

cc event Indicates the progress event. The event can be any of the events listed in this
addendum under CC PROGRESS REQ.

cc flags Indicates the options flags.

ISUP EVNT PRESENTATION RESTRICTED
When set, this flag indicates that the event indication is not to be
presented to the caller. Otherwise, the event may be presented to
the caller.

Rules

Rules for issuing primitive:

1. This primitive will only be issued by the CCS provider before any CC IBI IND has
been issued while in state CCS WCON SREQ.

Rules for progress event:

1. Q.764 conforming CCS providers must support the complete list of progress events
listed above.

2. This primitive will not be issued by the CCS provider with event
ISUP EVNT ALERTING or event ISUP EVNT IBI: instead, a CC ALERTING IND
or CC IBI IND event will be issued.

Rules for progress flags:

1. The flag ISUP EVNT PRESENTATION RESTRICTED cannot be set when the vent
is ISUP EVNT PROGRESS.

CC IBI REQ

Rules

CC IBI IND

Rules

Call Established Primitives

CC SUSPEND REQ

Parameters

cc flags Specifies options associated with the suspend.

2006-01-02 245

Addendum for Q.764 Conformance

CC SUSRES NETWORK INITIATED
When this flag is set, it indicates that the suspend was network
originated. When this flag is not set, it indicates that the suspend
was ISDN subscriber initiated.

Rules

Rules for issuing primitive:

1. For Q.764 conforming CCS providers, suspend can be requested by independently either
via local provider or the remote provider. A call can be:
• Not Suspended
• Locally Suspended
• Remotely Suspended
• Locally and Remotely Suspended

2. Requests to locally suspend a call which is already locally suspended should be ignored
by the CCS provider.

CC SUSPEND IND

Parameters

cc flags Specifies options associated with the suspend.

CC SUSRES NETWORK INITIATED
When this flag is set, it indicates that the suspend was network
originated. When this flag is not set, it indicates that the suspend
was ISDN subscriber initiated.

Rules

Rules for issuing primitive:

1. For Q.764 conforming CCS providers, suspend can be requested by independently either
via local provider or the remote provider. A call can be:
• Not Suspended
• Locally Suspended
• Remotely Suspended
• Locally and Remotely Suspended

2. Indications of remote suspension of a call which is already remotely suspended will not
be issued by the CCS provider.

CC SUSPEND RES

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers
conforming to Q.764, if the CCS provider receives a CC SUSPEND RES in the

246 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

CCS WRES SUSIND or CCS SUSPENDED states, the CCS provider should ignore the
CC SUSPEND RES primitive and move directly to the CCS SUSPENDED state if it has
not already done so.

CC SUSPEND REJECT REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers con-
forming to Q.764, if the CCS provider receives a CC SUSPEND REJECT REQ in the
CCS WRES SUSIND or CCS SUSPENDED states, the CCS provider should reply with a
CC ERROR ACK primitive with error CCNOTSUPP.

CC RESUME REQ

Parameters

cc flags Specifies options associated with the resume.

CC SUSRES NETWORK INITIATED
When this flag is set, it indicates that the resume was network
originated. When this flag is not set, it indicates that the resume
was ISDN subscriber initiated.

Rules

CC RESUME IND

Parameters

cc flags Specifies options associated with the resume.

CC SUSRES NETWORK INITIATED
When this flag is set, it indicates that the resume was network
originated. When this flag is not set, it indicates that the resume
was ISDN subscriber initiated.

Rules

CC RESUME RES

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers
conforming to Q.764, if the CCS provider receives a CC RESUME RES in the
CCS WRES SUSIND or CCS ANSWERED states, the CCS provider should ignore the
CC RESUME RES primitive and move directly to the CCS RESUMEED state if it has
not already done so.

2006-01-02 247

Addendum for Q.764 Conformance

CC RESUME REJECT REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers con-
forming to Q.764, if the CCS provider receives a CC RESUME REJECT REQ in the
CCS WRES SUSIND or CCS ANSWERED states, the CCS provider should reply with a
CC ERROR ACK primitive with error CCNOTSUPP.

Call Termination Primitives

CC REJECT REQ

Rules

Rules for issuing primitive:

For compatibility between CCS providers conforming to Q.931 and CCS providers conform-
ing to Q.764, if the CCS provider receives a CC REJECT REQ in the CCS WRES SIND
(CCS ICC WAIT COT or CCS ICC WAIT ACM) states, the provider should perform an
automatic release procedure and move to the CCS WAIT RLC state.

CC CALL FAILURE IND

Parameters

cc cause Indicates the cause of the failure. The cc cause can have one of the following
values:

ISUP CALL FAILURE COT FAILURE
Indicates that the continuity check on the circuit failed. This ap-
plies to incoming calls only.

ISUP CALL FAILURE RESET
ISUP CALL FAILURE RECV RLC

Indicates that the circuit was not completely released by the distant
end. This applies to incoming calls only.

ISUP CALL FAILURE BLOCKING
Indicates that the circuit was blocked during call setup. This ap-
plies to incoming calls only.

ISUP CALL FAILURE T2 TIMEOUT
ISUP CALL FAILURE T3 TIMEOUT
ISUP CALL FAILURE T6 TIMEOUT

Indicates that the call was suspended beyond the allowable period.
This applies to all established calls.

ISUP CALL FAILURE T7 TIMEOUT
Indicates that there was no response to the call setup request. This
applies to outgoing calls only.

248 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

ISUP CALL FAILURE T8 TIMEOUT
Indicates that the call failed waiting for a continuity check report
from the distant end. This applies to incoming calls only.

ISUP CALL FAILURE T9 TIMEOUT
Indicates that the call failed while waiting for the distant end to
answer. This applies to outgoing calls only.

ISUP CALL FAILURE T35 TIMEOUT
Indicates that additional information (digits) were not received
from the caller within a sufficient period. This applies to incoming
calls only.

ISUP CALL FAILURE T38 TIMEOUT
Indicates that the call was suspended beyond the allowable period.
This applies to all established calls.

ISUP CALL FAILURE CIRCUIT BUSY

Rules

CC DISCONNECT REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS providers conform-
ing to Q.764, if the CCS provider receives a CC DISCONNECT REQ, the provider should
respond with CC ERROR ACK with the error CCNOTSUPP.

CC RELEASE REQ

Parameters

cc cause Indicates the cause of the release. Cause can be one of the following values:

CC CAUS UNALLOCATED NUMBER
(no description)

CC CAUS NO ROUTE TO TRANSIT NETWORK
(no description)

CC CAUS NO ROUTE TO DESTINATION
(no description)

CC CAUS SEND SPECIAL INFO TONE
(no description)

CC CAUS MISDIALLED TRUNK PREFIX
(no description)

CC CAUS PREEMPTION
(no description)

2006-01-02 249

Addendum for Q.764 Conformance

CC CAUS PREEMPTION CCT RESERVED
(no description)

CC CAUS NORMAL CALL CLEARING
(no description)

CC CAUS USER BUSY
(no description)

CC CAUS NO USER RESPONDING
(no description)

CC CAUS NO ANSWER
(no description)

CC CAUS SUBSCRIBER ABSENT
(no description)

CC CAUS CALL REJECTED
(no description)

CC CAUS NUMBER CHANGED
(no description)

CC CAUS REDIRECT
(no description)

CC CAUS OUT OF ORDER
(no description)

CC CAUS ADDRESS INCOMPLETE
(no description)

CC CAUS FACILITY REJECTED
(no description)

CC CAUS NORMAL UNSPECIFIED
(no description)

CC CAUS NO CCT AVAILABLE
(no description)

CC CAUS NETWORK OUT OF ORDER
(no description)

CC CAUS TEMPORARY FAILURE
(no description)

CC CAUS SWITCHING EQUIP CONGESTION
(no description)

CC CAUS ACCESS INFO DISCARDED
(no description)

CC CAUS REQUESTED CCT UNAVAILABLE
(no description)

250 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC CAUS PRECEDENCE CALL BLOCKED
(no description)

CC CAUS RESOURCE UNAVAILABLE
(no description)

CC CAUS NOT SUBSCRIBED
(no description)

CC CAUS OGC BARRED WITHIN CUG
(no description)

CC CAUS ICC BARRED WITHIN CUG
(no description)

CC CAUS BC NOT AUTHORIZED
(no description)

CC CAUS BC NOT AVAILABLE
(no description)

CC CAUS INCONSISTENCY
(no description)

CC CAUS SERVICE OPTION NOT AVAILABLE
(no description)

CC CAUS BC NOT IMPLEMENTED
(no description)

CC CAUS FACILITY NOT IMPLEMENTED
(no description)

CC CAUS RESTRICTED BC ONLY
(no description)

CC CAUS SERIVCE OPTION NOT IMPLEMENTED
(no description)

CC CAUS USER NOT MEMBER OF CUG
(no description)

CC CAUS INCOMPATIBLE DESTINATION
(no description)

CC CAUS NON EXISTENT CUG
(no description)

CC CAUS INVALID TRANSIT NTWK SELECTION
(no description)

CC CAUS INVALID MESSAGE
(no description)

CC CAUS MESSAGE TYPE NOT IMPLEMENTED
(no description)

2006-01-02 251

Addendum for Q.764 Conformance

CC CAUS PARAMETER NOT IMPLEMENTED
(no description)

CC CAUS RECOVERY ON TIMER EXPIRY
(no description)

CC CAUS PARAMETER PASSED ON
(no description)

CC CAUS MESSAGE DISCARDED
(no description)

CC CAUS PROTOCOL ERROR
(no description)

CC CAUS INTERWORKING
(no description)

CC CAUS UNALLOCATED DEST NUMBER
(no description)

CC CAUS UNKNOWN BUSINESS GROUP
(no description)

CC CAUS EXCHANGE ROUTING ERROR
(no description)

CC CAUS MISROUTED CALL TO PORTED NUMBER 26
(no description)

CC CAUS LNP QOR NUMBER NOT FOUND
(no description)

CC CAUS PREEMPTION
(no description)

CC CAUS PRECEDENCE CALL BLOCKED
(no description)

CC CAUS CALL TYPE INCOMPATIBLE
(no description)

CC CAUS GROUP RESTRICTIONS
(no description)

Rules

CC RELEASE IND

Parameters

cc cause Indicates the cause of the release. Cause can be one of the cause value listed in
this addendum under CC RELEASE REQ.

252 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Rules

Management Primitives

CC RESTART REQ

Rules

For compatibility between CCS providers conforming to Q.931 and CCS provider conform-
ing to Q.764, if the CCS provider conforming to Q.764 receives a CC RESTART REQ, the
provider should respond with CC ERROR ACK with the error CCNOTSUPP.

CC RESET REQ

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC RESET IND

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

2006-01-02 253

Addendum for Q.764 Conformance

CC RESET RES

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC RESET CON

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC BLOCKING REQ

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

254 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC BLOCKING IND

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC BLOCKING RES

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier

2006-01-02 255

Addendum for Q.764 Conformance

in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC BLOCKING CON

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC UNBLOCKING REQ

Parameters

cc flags Indicates the options flags.

256 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC UNBLOCKING IND

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC UNBLOCKING RES

2006-01-02 257

Addendum for Q.764 Conformance

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC UNBLOCKING CON

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

ISUP MAINTENANCE ORIENTED
ISUP HARDWARE FAILURE ORIENTED

When one of these flags is set it indicates that either maintenance
oriented or hardware failure oriented blocking is to be performed.
If both or neither of these flags are set, the primitive will fail with
error CCBADFLAG.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

258 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

CC QUERY REQ

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC QUERY IND

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC QUERY RES

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

2006-01-02 259

Addendum for Q.764 Conformance

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

CC QUERY CON

Parameters

cc flags Indicates the options flags.

ISUP GROUP
When set, this flag indicates that the operation is to be performed
on a group of call control addresses and that any circuit identifier
in the specified call control address is to be interpreted by the CCS
provider as a circuit group identifier.

cc addr length
Indicates the length of the address which consists of a circuit identifier.

cc addr offset
Indicates the offset of the address from the start of the block.

Rules

Q.764 Header File Listing
/***

@(#) $Id: cci.texi,v 0.9.2.1 2006/01/02 11:51:36 brian Exp $

Copyright (C) 2001-2006 OpenSS7 Corporation <http://www.openss7.com>

Copyright (C) 1997-2000 Brian F. G. Bidulock <bidulock@dallas.net>

All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 675 Mass

260 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

Ave, Cambridge, MA 02139, USA.

U.S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on

behalf of the U.S. Government ("Government"), the following provisions apply

to you. If the Software is supplied by the Department of Defense ("DoD"), it

is classified as "Commercial Computer Software" under paragraph 252.227-7014

of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any

successor regulations) and the Government is acquiring only the license rights

granted herein (the license rights customarily provided to non-Government

users). If the Software is supplied to any unit or agency of the Government

other than DoD, it is classified as "Restricted Computer Software" and the

Government’s rights in the Software are defined in paragraph 52.227-19 of the

Federal Acquisition Regulations ("FAR") (or any success regulations) or, in

the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR

(or any successor regulations).

Commercial licensing and support of this software is available from OpenSS7

Corporation at a fee. See http://www.openss7.com/

Last Modified $Date: 2006/01/02 11:51:36 $ by $Author: brian $

***/

#ifndef __SS7_ISUPI_H__

#define __SS7_ISUPI_H__

#ident "@(#) $Name: $($Revision: 0.9.2.1 $) Copyright (c) 1997-2006 OpenSS7 Corporation."

/*

* ISUP addresss

*/

typedef struct isup_addr {

ulong scope; /* the scope of the identifier */

ulong id; /* the identifier within the scope */

ulong cic; /* circuit identification code within the scope */

} isup_addr_t;

#define ISUP_SCOPE_CT 1 /* circuit scope */

#define ISUP_SCOPE_CG 2 /* circuit group scope */

#define ISUP_SCOPE_TG 3 /* trunk group scope */

#define ISUP_SCOPE_SR 4 /* signalling relation scope */

#define ISUP_SCOPE_SP 5 /* signalling point scope */

#define ISUP_SCOPE_DF 6 /* default scope */

#define ISUP_SCOPE_CIC 7 /* for unidentified cic addresses */

/*

* Definitions for CCI for Q.764 Conforming CCS Providers.

*/

2006-01-02 261

Addendum for Q.764 Conformance

enum {

ISUP_INCOMING_INTERNATIONAL_EXCHANGE = 0x00000001UL,

ISUP_SUSPEND_NATIONALLY_PERFORMED = 0x00000002UL,

};

enum {

CMS_IDLE = 0,

CMS_WCON_BLREQ,

CMS_WRES_BLIND,

CMS_WACK_BLRES,

CMS_WCON_UBREQ,

CMS_WRES_UBIND,

CMS_WACK_UBRES,

CMS_WCON_RESREQ,

CMS_WRES_RESIND,

CMS_WACK_RESRES,

CMS_WCON_QRYREQ,

CMS_WRES_QRYIND,

CMS_WACK_QRYRES,

};

enum {

CKS_IDLE = 0,

CKS_WIND_CONT,

CKS_WRES_CONT,

CKS_WIND_CTEST,

CKS_WREQ_CTEST,

CKS_WIND_CCREP,

CKS_WREQ_CCREP,

CKS_WCON_RELREQ,

CKS_WRES_RELIND,

};

/*

* Circuit States:

*/

#define CTS_ICC 0x00000010

#define CTS_OGC 0x00000020

#define CTS_COT 0x00000040

#define CTS_LPA 0x00000080

#define CTS_COR 0x00000100

#define CTS_MASK 0x0000000f

#define CTS_DIRECTION(__val) (__val & (CTS_ICC|CTS_OGC))

#define CTS_CONT_CHECK(__val) (__val & (CTS_COT|CTS_LPA|CTS_COR))

#define CTS_MESSAGE(__val) (__val & CTS_MASK)

#define CTS_IDLE 0x00000000

#define CTS_WAIT_IAM 0x00000001

#define CTS_WAIT_CCR 0x00000002

#define CTS_WAIT_LPA 0x00000003

#define CTS_WAIT_SAM 0x00000004

#define CTS_WAIT_ACM 0x00000005

#define CTS_WAIT_ANM 0x00000006

#define CTS_ANSWERED 0x00000007

#define CTS_SUSPENDED 0x00000008

262 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

#define CTS_WAIT_RLC 0x00000009

#define CTS_SEND_RLC 0x0000000a

#define CTS_ICC_WAIT_COT_CCR (CTS_ICC | CTS_COT | CTS_WAIT_CCR)

#define CTS_OGC_WAIT_COT_CCR (CTS_OGC | CTS_COT | CTS_WAIT_CCR)

#define CTS_ICC_WAIT_LPA_CCR (CTS_ICC | CTS_LPA | CTS_WAIT_CCR)

#define CTS_OGC_WAIT_LPA_CCR (CTS_OGC | CTS_LPA | CTS_WAIT_CCR)

#define CTS_ICC_WAIT_CCR (CTS_ICC | CTS_WAIT_CCR)

#define CTS_OGC_WAIT_CCR (CTS_OGC | CTS_WAIT_CCR)

#define CTS_ICC_WAIT_COR_SAM (CTS_ICC | CTS_COR | CTS_WAIT_SAM)

#define CTS_OGC_WAIT_COR_SAM (CTS_OGC | CTS_COR | CTS_WAIT_SAM)

#define CTS_ICC_WAIT_COT_SAM (CTS_ICC | CTS_COT | CTS_WAIT_SAM)

#define CTS_OGC_WAIT_COT_SAM (CTS_OGC | CTS_COT | CTS_WAIT_SAM)

#define CTS_ICC_WAIT_LPA_SAM (CTS_ICC | CTS_LPA | CTS_WAIT_SAM)

#define CTS_OGC_WAIT_LPA_SAM (CTS_OGC | CTS_LPA | CTS_WAIT_SAM)

#define CTS_ICC_WAIT_SAM (CTS_ICC | CTS_WAIT_SAM)

#define CTS_OGC_WAIT_SAM (CTS_OGC | CTS_WAIT_SAM)

#define CTS_ICC_WAIT_COR_ACM (CTS_ICC | CTS_COR | CTS_WAIT_ACM)

#define CTS_OGC_WAIT_COR_ACM (CTS_OGC | CTS_COR | CTS_WAIT_ACM)

#define CTS_ICC_WAIT_COT_ACM (CTS_ICC | CTS_COT | CTS_WAIT_ACM)

#define CTS_OGC_WAIT_COT_ACM (CTS_OGC | CTS_COT | CTS_WAIT_ACM)

#define CTS_ICC_WAIT_LPA_ACM (CTS_ICC | CTS_LPA | CTS_WAIT_ACM)

#define CTS_OGC_WAIT_LPA_ACM (CTS_OGC | CTS_LPA | CTS_WAIT_ACM)

#define CTS_ICC_WAIT_ACM (CTS_ICC | CTS_WAIT_ACM)

#define CTS_OGC_WAIT_ACM (CTS_OGC | CTS_WAIT_ACM)

#define CTS_ICC_WAIT_ANM (CTS_ICC | CTS_WAIT_ANM)

#define CTS_OGC_WAIT_ANM (CTS_OGC | CTS_WAIT_ANM)

#define CTS_ICC_ANSWERED (CTS_ICC | CTS_ANSWERED)

#define CTS_OGC_ANSWERED (CTS_OGC | CTS_ANSWERED)

#define CTS_ICC_SUSPENDED (CTS_ICC | CTS_SUSPENDED)

#define CTS_OGC_SUSPENDED (CTS_OGC | CTS_SUSPENDED)

#define CTS_ICC_WAIT_RLC (CTS_ICC | CTS_WAIT_RLC)

#define CTS_OGC_WAIT_RLC (CTS_OGC | CTS_WAIT_RLC)

#define CTS_ICC_SEND_RLC (CTS_ICC | CTS_SEND_RLC)

#define CTS_OGC_SEND_RLC (CTS_OGC | CTS_SEND_RLC)

/*

* Circuit, Group and MTP Flags

*/

#define CCTF_LOC_M_BLOCKED 0x00000001UL

#define CCTF_REM_M_BLOCKED 0x00000002UL

#define CCTF_LOC_H_BLOCKED 0x00000004UL

#define CCTF_REM_H_BLOCKED 0x00000008UL

#define CCTF_LOC_M_BLOCK_PENDING 0x00000010UL

#define CCTF_REM_M_BLOCK_PENDING 0x00000020UL

#define CCTF_LOC_H_BLOCK_PENDING 0x00000040UL

#define CCTF_REM_H_BLOCK_PENDING 0x00000080UL

#define CCTF_LOC_M_UNBLOCK_PENDING 0x00000100UL

#define CCTF_REM_M_UNBLOCK_PENDING 0x00000200UL

#define CCTF_LOC_H_UNBLOCK_PENDING 0x00000400UL

#define CCTF_REM_H_UNBLOCK_PENDING 0x00000800UL

#define CCTF_LOC_RESET_PENDING 0x00001000UL

#define CCTF_REM_RESET_PENDING 0x00002000UL

#define CCTF_LOC_QUERY_PENDING 0x00004000UL

#define CCTF_REM_QUERY_PENDING 0x00008000UL

#define CCTF_ORIG_SUSPENDED 0x00010000UL

2006-01-02 263

Addendum for Q.764 Conformance

#define CCTF_TERM_SUSPENDED 0x00020000UL

#define CCTF_UPT_PENDING 0x00040000UL

#define CCTF_LOC_S_BLOCKED 0x00080000UL

#define CCTF_LOC_G_BLOCK_PENDING 0x00100000UL

#define CCTF_REM_G_BLOCK_PENDING 0x00200000UL

#define CCTF_LOC_G_UNBLOCK_PENDING 0x00400000UL

#define CCTF_REM_G_UNBLOCK_PENDING 0x00800000UL

#define CCTF_COR_PENDING 0x01000000UL

#define CCTF_COT_PENDING 0x02000000UL

#define CCTF_LPA_PENDING 0x04000000UL

#define CCTM_OUT_OF_SERVICE (\

CCTF_LOC_S_BLOCKED | \

CCTF_REM_M_BLOCKED | \

CCTF_REM_H_BLOCKED | \

CCTF_REM_M_BLOCK_PENDING | \

CCTF_REM_H_BLOCK_PENDING | \

CCTF_REM_G_BLOCK_PENDING | \

CCTF_LOC_RESET_PENDING | \

CCTF_REM_RESET_PENDING | \

0 \

)

#define CCTM_CONT_CHECK (\

CCTF_COR_PENDING | \

CCTF_COT_PENDING | \

CCTF_LPA_PENDING | \

0 \

)

/* Cause values for CC_CALL_REATTEMPT_IND */

/* Cause values -- Q.764 conforming */

#define ISUP_REATTEMPT_DUAL_SIEZURE 1UL

#define ISUP_REATTEMPT_RESET 2UL

#define ISUP_REATTEMPT_BLOCKING 3UL

#define ISUP_REATTEMPT_T24_TIMEOUT 4UL

#define ISUP_REATTEMPT_UNEXPECTED 5UL

#define ISUP_REATTEMPT_COT_FAILURE 6UL

#define ISUP_REATTEMPT_CIRCUIT_BUSY 7UL

/* Call types for CC_SETUP_REQ and CC_SETUP_IND */

/* Call types -- Q.764 Conforming */

#define ISUP_CALL_TYPE_SPEECH 0x00000000UL

#define ISUP_CALL_TYPE_64KBS_UNRESTRICTED 0x00000002UL

#define ISUP_CALL_TYPE_3_1kHZ_AUDIO 0x00000003UL

#define ISUP_CALL_TYPE_64KBS_PREFERRED 0x00000006UL

#define ISUP_CALL_TYPE_2x64KBS_UNRESTRICTED 0x00000007UL

#define ISUP_CALL_TYPE_384KBS_UNRESTRICTED 0x00000008UL

#define ISUP_CALL_TYPE_1536KBS_UNRESTRICTED 0x00000009UL

#define ISUP_CALL_TYPE_1920KBS_UNRESTRICTED 0x0000000aUL

/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */

/* Call flags -- Q.764 Conforming */

#define ISUP_NCI_ONE_SATELLITE_CCT 0x00000001UL

#define ISUP_NCI_TWO_SATELLITE_CCT 0x00000002UL

#define ISUP_NCI_SATELLITE_MASK 0x00000003UL

#define ISUP_NCI_CONT_CHECK_REQUIRED 0x00000004UL

264 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

#define ISUP_NCI_CONT_CHECK_PREVIOUS 0x00000008UL

#define ISUP_NCI_CONT_CHECK_MASK 0x0000000cUL

#define ISUP_NCI_OG_ECHO_CONTROL_DEVICE 0x00000010UL

/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */

/* Call flags -- Q.764 Conforming */

#define ISUP_FCI_INTERNATIONAL_CALL 0x00000100UL

#define ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000200UL

#define ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE 0x00000400UL

#define ISUP_FCI_INTERWORKING_ENCOUNTERED 0x00000800UL

#define ISUP_FCI_E2E_INFORMATION_AVAILABLE 0x00001000UL

#define ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY 0x00002000UL

#define ISUP_FCI_ISDN_USER_PART_NOT_REQUIRED 0x00004000UL

#define ISUP_FCI_ISDN_USER_PART_REQUIRED 0x00008000UL

#define ISUP_FCI_ORIGINATING_ACCESS_ISDN 0x00010000UL

#define ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE 0x00020000UL

#define ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE 0x00040000UL

/* Call flags for CC_SETUP_REQ and CC_SETUP_IND */

/* Call flags -- Q.764 Conforming */

#define ISUP_CPC_MASK 0xff000000UL

#define ISUP_CPC_UNKNOWN 0x00000000UL

#define ISUP_CPC_OPERATOR_FRENCH 0x01000000UL

#define ISUP_CPC_OPERATOR_ENGLISH 0x02000000UL

#define ISUP_CPC_OPERATOR_GERMAN 0x03000000UL

#define ISUP_CPC_OPERATOR_RUSSIAN 0x04000000UL

#define ISUP_CPC_OPERATOR_SPANISH 0x05000000UL

#define ISUP_CPC_OPERATOR_LANGUAGE_6 0x06000000UL

#define ISUP_CPC_OPERATOR_LANGUAGE_7 0x07000000UL

#define ISUP_CPC_OPERATOR_LANGUAGE_8 0x08000000UL

#define ISUP_CPC_OPERATOR_CODE_9 0x09000000UL

#define ISUP_CPC_SUBSCRIBER_ORDINARY 0x0a000000UL

#define ISUP_CPC_SUBSCRIBER_PRIORITY 0x0b000000UL

#define ISUP_CPC_VOICE_BAND_DATA 0x0c000000UL

#define ISUP_CPC_TEST_CALL 0x0d000000UL

#define ISUP_CPC_SPARE 0x0e000000UL

#define ISUP_CPC_PAYPHONE 0x0f000000UL

/* Flags for CC_CONT_REPORT_REQ and CC_CONT_REPORT_IND */

/* Flags -- Q.764 Conforming */

#define ISUP_COT_FAILURE 0x00000000UL

#define ISUP_COT_SUCCESS 0x00000001UL

/* Flags for CC_PROCEEDING, CC_ALERTING, CC_PROGRESS, CC_IBI */

/* Flags -- Q.764 Conforming */

#define ISUP_BCI_NO_CHARGE 0x00000001UL

#define ISUP_BCI_CHARGE 0x00000002UL

#define ISUP_BCI_CHARGE_MASK 0x00000003UL

#define ISUP_BCI_SUBSCRIBER_FREE 0x00000004UL

#define ISUP_BCI_CONNECT_FREE 0x00000008UL

#define ISUP_BCI_CPS_MASK 0x0000000cUL

#define ISUP_BCI_ORDINARY_SUBSCRIBER 0x00000010UL

#define ISUP_BCI_PAYPHONE 0x00000020UL

#define ISUP_BCI_CPI_MASK 0x00000030UL

#define ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAIL 0x00000040UL

#define ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE 0x00000080UL

#define ISUP_BCI_E2E_MASK 0x000000c0UL

#define ISUP_BCI_INTERWORKING_ENCOUNTERED 0x00000100UL

2006-01-02 265

Addendum for Q.764 Conformance

#define ISUP_BCI_E2E_INFORMATION_AVAILABLE 0x00000200UL

#define ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY 0x00000400UL

#define ISUP_BCI_HOLDING_REQUESTED 0x00000800UL

#define ISUP_BCI_TERMINATING_ACCESS_ISDN 0x00001000UL

#define ISUP_BCI_IC_ECHO_CONTROL_DEVICE 0x00002000UL

#define ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE 0x00004000UL

#define ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE 0x00008000UL

#define ISUP_BCI_SCCP_METHOD_MASK 0x0000c000UL

#define ISUP_OBCI_INBAND_INFORMATION_AVAILABLE 0x00010000UL

#define ISUP_OBCI_CALL_DIVERSION_MAY_OCCUR 0x00020000UL

#define ISUP_OBCI_ADDITIONAL_INFO_IN_SEG 0x00040000UL

#define ISUP_OBCI_MLPP_USER 0x00080000UL

/* Events for CC_PROGRESS_REQ and CC_PROGRESS_IND */

/* Events -- Q.764 Conforming */

#define ISUP_EVNT_PRES_RESTRICT 0x80

#define ISUP_EVNT_ALERTING 0x01 /* alerting */

#define ISUP_EVNT_PROGRESS 0x02 /* progress */

#define ISUP_EVNT_IBI 0x03 /* in-band info or approp pat-

tern avail */

#define ISUP_EVNT_CFB 0x04 /* call forwarded busy */

#define ISUP_EVNT_CFNA 0x05 /* call forwarded no reply */

#define ISUP_EVNT_CFU 0x06 /* call forwarded unconditional */

#define ISUP_EVNT_MASK 0x7f

/* Cause values CC_CALL_FAILURE_IND -- Q.764 Conforming */

#define ISUP_CALL_FAILURE_COT_FAILURE 1UL

#define ISUP_CALL_FAILURE_RESET 2UL

#define ISUP_CALL_FAILURE_RECV_RLC 3UL

#define ISUP_CALL_FAILURE_BLOCKING 4UL

#define ISUP_CALL_FAILURE_T2_TIMEOUT 5UL

#define ISUP_CALL_FAILURE_T3_TIMEOUT 6UL

#define ISUP_CALL_FAILURE_T6_TIMEOUT 7UL

#define ISUP_CALL_FAILURE_T7_TIMEOUT 8UL

#define ISUP_CALL_FAILURE_T8_TIMEOUT 9UL

#define ISUP_CALL_FAILURE_T9_TIMEOUT 10UL

#define ISUP_CALL_FAILURE_T35_TIMEOUT 11UL

#define ISUP_CALL_FAILURE_T38_TIMEOUT 12UL

#define ISUP_CALL_FAILURE_CIRCUIT_BUSY 13UL

/*

* Q.850 Cause Values

*/

/* Normal class */

#define CC_CAUS_UNALLOCATED_NUMBER 1 /* Unallocated (unassigned) num-

ber */

#define CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK 2 /* No route to specified tran-

sit network */

#define CC_CAUS_NO_ROUTE_TO_DESTINATION 3 /* No route to destination */

#define CC_CAUS_SEND_SPECIAL_INFO_TONE 4 /* Send special information tone */

#define CC_CAUS_MISDIALLED_TRUNK_PREFIX 5 /* Misdialled trunk prefix */

#define CC_CAUS_PREEMPTION 8 /* Preemption */

#define CC_CAUS_PREEMPTION_CCT_RESERVED 9 /* Preemption - circuit reserved for reuse */

#define CC_CAUS_NORMAL_CALL_CLEARING 16 /* Normal call clearing */

#define CC_CAUS_USER_BUSY 17 /* User busy */

#define CC_CAUS_NO_USER_RESPONDING 18 /* No user responding */

266 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

#define CC_CAUS_NO_ANSWER 19 /* No answer from user (user alerted) */

#define CC_CAUS_SUBSCRIBER_ABSENT 20 /* Subscriber absent */

#define CC_CAUS_CALL_REJECTED 21 /* Call rejected */

#define CC_CAUS_NUMBER_CHANGED 22 /* Number changed */

#define CC_CAUS_REDIRECT 23 /* Redirect to new destination */

#define CC_CAUS_OUT_OF_ORDER 27 /* Desitination out of order */

#define CC_CAUS_ADDRESS_INCOMPLETE 28 /* Invalid number format (address in-

complete) */

#define CC_CAUS_FACILITY_REJECTED 29 /* Facility rejected */

#define CC_CAUS_NORMAL_UNSPECIFIED 31 /* Normal unspecified */

/* Resource Unavailable Class */

#define CC_CAUS_NO_CCT_AVAILABLE 34 /* No circuit/channel available */

#define CC_CAUS_NETWORK_OUT_OF_ORDER 38 /* Network out of order */

#define CC_CAUS_TEMPORARY_FAILURE 41 /* Temporary failure */

#define CC_CAUS_SWITCHING_EQUIP_CONGESTION 42 /* Switching equipment conges-

tion */

#define CC_CAUS_ACCESS_INFO_DISCARDED 43 /* Access information discarded */

#define CC_CAUS_REQUESTED_CCT_UNAVAILABLE 44 /* Requested circuit/channel not avail-

able */

#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked */

#define CC_CAUS_RESOURCE_UNAVAILABLE 47 /* Resource unavailable, unspec-

ified */

/* Service or Option Unavaialble Class */

#define CC_CAUS_NOT_SUBSCRIBED 50 /* Requested facility not sub-

scribed */

#define CC_CAUS_OGC_BARRED_WITHIN_CUG 53 /* Outgoing calls barred within CUG */

#define CC_CAUS_ICC_BARRED WITHIN_CUG 55 /* Incoming calls barred within CUG */

#define CC_CAUS_BC_NOT_AUTHORIZED 57 /* Bearer capability not autho-

rized */

#define CC_CAUS_BC_NOT_AVAILABLE 58 /* Bearer capability not presently avail-

able */

#define CC_CAUS_INCONSISTENCY 62 /* Inconsistency in designated out-

going access

information and subscriber class */

#define CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE 63 /* Service or option not avail-

able, unspecified */

/* Service or Option Not Implemented Class */

#define CC_CAUS_BC_NOT_IMPLEMENTED 65 /* Bearer capability not imple-

mented */

#define CC_CAUS_FACILITY_NOT_IMPLEMENTED 69 /* Requested facility not imple-

mented */

#define CC_CAUS_RESTRICTED_BC_ONLY 70 /* Only restricted digital in-

formation bearer capability

is available */

#define CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED 79 /* Service or option not imple-

mented, unspecified */

/* Invalid Message (e.g., Parameter out of Range) Class */

#define CC_CAUS_USER_NOT_MEMBER_OF_CUG 87 /* User not member of CUG */

#define CC_CAUS_INCOMPATIBLE_DESTINATION 88 /* Incompatible destination */

#define CC_CAUS_NON_EXISTENT_CUG 90 /* Non-existent CUG */

#define CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION 91 /* Invalid transit network se-

lection */

#define CC_CAUS_INVALID_MESSAGE 95 /* Invalid message, unspecified */

/* Protocol Error (e.g., Unknwon Message) Class */

#define CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED 97 /* Message typ non-existent or not im-

plemented. */

2006-01-02 267

Addendum for Q.764 Conformance

#define CC_CAUS_PARAMETER_NOT_IMPLEMENTED 99 /* Information element/Parameter non-

existent or not

implemented */

#define CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 102 /* Recovery on timer expiry */

#define CC_CAUS_PARAMETER_PASSED_ON 103 /* Parameter non-existent or not im-

plemented - passed on */

#define CC_CAUS_MESSAGE_DISCARDED 110 /* Message with unrecognized pa-

rameter discarded */

#define CC_CAUS_PROTOCOL_ERROR 111 /* Protocol error, unspecified */

/* Interworking Class */

#define CC_CAUS_INTERWORKING 127 /* Interworking, unspecified */

/*

* ANSI Standard Causes

*/

/* Normal Class */

#define CC_CAUS_UNALLOCATED_DEST_NUMBER 23 /* Unallocated destination num-

ber */

#define CC_CAUS_UNKNOWN_BUSINESS_GROUP 24 /* Unknown business group */

#define CC_CAUS_EXCHANGE_ROUTING_ERROR 25 /* Exchange routing error */

#define CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26 /* Misrouted call to a ported num-

ber */

#define CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 27 /* Number portability Query on Re-

lease (QoR) number not

found. */

/* Resource Unavailable Class */

#define CC_CAUS_RESOURCE_PREEMPTION 45 /* Preemption. */

#define CC_CAUS_PRECEDENCE_CALL_BLOCKED 46 /* Precedence call blocked. */

/* Service or Option Not Available Class */

#define CC_CAUS_CALL_TYPE_INCOMPATIBLE 51 /* Call type incompatible with ser-

vice request */

#define CC_CAUS_GROUP_RESTRICTIONS 54 /* Call blocked due to group re-

strictions */

/* Management flags -- Q.764 Conforming */

#define ISUP_GROUP 0x00010000UL

#define ISUP_MAINTENANCE_ORIENTED 0x00000000UL

#define ISUP_HARDWARE_FAILURE_ORIENTED 0x00000001UL

#define ISUP_SRIS_MASK 0x3

#define ISUP_SRIS_NETWORK_INITIATED 0x1

#define ISUP_SRIS_USER_INITIATED 0x2

/* Maintenance indications -- Q.764 Conforming */

#define ISUP_MAINT_T5_TIMEOUT 3UL /* Q.752 12.5 on occrence */

#define ISUP_MAINT_T13_TIMEOUT 4UL /* Q.752 12.16 1st and delta */

#define ISUP_MAINT_T15_TIMEOUT 5UL /* Q.752 12.17 1st and delta */

#define ISUP_MAINT_T17_TIMEOUT 6UL /* Q.752 12.1 1st and delta */

#define ISUP_MAINT_T19_TIMEOUT 7UL /* Q.752 12.18 1st and delta */

#define ISUP_MAINT_T21_TIMEOUT 8UL /* Q.752 12.19 1st and delta */

#define ISUP_MAINT_T23_TIMEOUT 9UL /* Q.752 12.2 1st and delta */

#define ISUP_MAINT_T25_TIMEOUT 10UL

#define ISUP_MAINT_T26_TIMEOUT 11UL

#define ISUP_MAINT_T27_TIMEOUT 12UL

#define ISUP_MAINT_T28_TIMEOUT 13UL

#define ISUP_MAINT_T36_TIMEOUT 14UL

#define ISUP_MAINT_UNEXPECTED_CGBA 15UL /* Q.752 12.12 1st and delta */

268 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for Q.764 Conformance

#define ISUP_MAINT_UNEXPECTED_CGUA 16UL /* Q.752 12.13 1st and delta */

#define ISUP_MAINT_UNEXPECTED_MESSAGE 17UL /* Q.752 12.21 1st and delta */

#define ISUP_MAINT_UNEQUIPPED_CIC 18UL

#define ISUP_MAINT_SEGMENTATION_DISCARDED 19UL

#define ISUP_MAINT_USER_PART_UNEQUIPPED 20UL

#define ISUP_MAINT_USER_PART_UNAVAILABLE 21UL /* Q.752 10.1, 10.8 on occrence */

#define ISUP_MAINT_USER_PART_AVAILABLE 22UL /* Q.752 10.3, 10.9 on occrence */

#define ISUP_MAINT_USER_PART_MAN_MADE_BUSY 23UL /* Q.752 10.2 on occrence */ /* XXX */

#define ISUP_MAINT_USER_PART_CONGESTED 24UL /* Q.752 10.5, 10.11 on occrence */

#define ISUP_MAINT_USER_PART_UNCONGESTED 25UL /* Q.752 10.6, 10.12 on occrence */

#define ISUP_MAINT_MISSING_ACK_IN_CGBA 26UL /* Q.752 12.8 1st and delta */

#define ISUP_MAINT_MISSING_ACK_IN_CGUA 27UL /* Q.752 12.9 1st and delta */

#define ISUP_MAINT_ABNORMAL_ACK_IN_CGBA 28UL /* Q.752 12.10 1st and delta */

#define ISUP_MAINT_ABNORMAL_ACK_IN_CGUA 29UL /* Q.752 12.11 1st and delta */

#define ISUP_MAINT_UNEXPECTED_BLA 30UL /* Q.752 12.14 1st and delta */

#define ISUP_MAINT_UNEXPECTED_UBA 31UL /* Q.752 12.15 1st and delta */

#define ISUP_MAINT_RELEASE_UNREC_INFO 32UL /* Q.752 12.22 1st and delta */ /* XXX */

#define ISUP_MAINT_RELEASE_FAILURE 33UL /* Q.752 12.23 1st and delta */ /* XXX */

#define ISUP_MAINT_MESSAGE_FORMAT_ERROR 34UL /* Q.752 12.20 1st and delta */ /* XXX */

#endif /* __SS7_ISUPI_H__ */

2006-01-02 269

Addendum for Q.764 Conformance

270 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

Addendum for ETSI EN 300 356-1 V3.2.2
Conformance

This addendum describes the formats and rules that are specific to ETSI EN 300 356-1
V3.2.2. The addendum must be used along with the generic CCI as defined in the main
document, and the Q.764 conformance defined in [Addendum for Q.764 Conformance],
page 223. when implementing a CCS provider that will be configured with the EN 300
356-1 call processing layer.

Primitives and Rules for ETSI EN 300 356-1 V3.2.2
Conformance

The following are the additional rules that apply to the CCI primitives for ETSI EN 300
356-1 V3.2.2 compatibility.

Local Management Primitives

Call Setup Primitives

CC SETUP REQ

Parameters

Flags

Rules

CC SETUP IND

Parameters

cc call type
Specifies the call type to be set up. In addition to Q.764 values, for EN 300
356-1 V3.2.2 conforming CCS providers, the call type can also be one of the
values listed under "Call Type" below.

Call Type

The following call types are defined for EN 300 356-1 V3.2.2 conforming CCS providers in
addition to the Q.931 values shown in [Addendum for Q.931 Conformance], page 197.

CC CALL TYPE 3x64KBS UNRESTRICTED
The call type is 3 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 3 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 4x64KBS UNRESTRICTED
The call type is 4 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 4 x 64 kbit/s unrestricted digital information".

2006-01-02 271

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC CALL TYPE 5x64KBS UNRESTRICTED
The call type is 5 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 5 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 6x64KBS UNRESTRICTED
The call type is 6 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of 384
kbit/s unrestricted digital information. This call type can be synonymous with
CC CALL TYPE 384KBS UNRESTRICTED.

CC CALL TYPE 7x64KBS UNRESTRICTED
The call type is 7 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 7 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 8x64KBS UNRESTRICTED
The call type is 8 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 8 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 9x64KBS UNRESTRICTED
The call type is 9 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 9 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 10x64KBS UNRESTRICTED
The call type is 10 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 10 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 11x64KBS UNRESTRICTED
The call type is 11 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 11 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 12x64KBS UNRESTRICTED
The call type is 12 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 12 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 13x64KBS UNRESTRICTED
The call type is 13 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 13 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 14x64KBS UNRESTRICTED
The call type is 14 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 14 x 64 kbit/s unrestricted digital information".

272 Version 0.9a Ed. 3

Call Control Interface (CCI) Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC CALL TYPE 15x64KBS UNRESTRICTED
The call type is 15 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 15 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 16x64KBS UNRESTRICTED
The call type is 16 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 16 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 17x64KBS UNRESTRICTED
The call type is 17 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 17 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 18x64KBS UNRESTRICTED
The call type is 18 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 28 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 19x64KBS UNRESTRICTED
The call type is 19 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 19 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 20x64KBS UNRESTRICTED
The call type is 20 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 20 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 21x64KBS UNRESTRICTED
This call type corresponds to a EN 300 356-1 V3.2.2 transmission medium
requirement of "reserved for 21 x 64 kbit/s unrestricted digital information".
The call type is 21 x 64 kbit/s unrestricted digital information.

CC CALL TYPE 22x64KBS UNRESTRICTED
The call type is 22 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 22 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 23x64KBS UNRESTRICTED
The call type is 23 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 23 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 24x64KBS UNRESTRICTED
The call type is 24 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"1536 kbit/s unrestricted digital information". This call type can be synony-
mous with CC CALL TYPE 1536KBS UNRESTRICTED.

2006-01-02 273

Addendum for ETSI EN 300 356-1 V3.2.2 Conformance

CC CALL TYPE 25x64KBS UNRESTRICTED
The call type is 25 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 25 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 26x64KBS UNRESTRICTED
The call type is 26 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 26 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 27x64KBS UNRESTRICTED
The call type is 27 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 27 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 28x64KBS UNRESTRICTED
The call type is 28 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"reserved for 28 x 64 kbit/s unrestricted digital information".

CC CALL TYPE 29x64KBS UNRESTRICTED
The call type is 29 x 64 kbit/s unrestricted digital information. This call type
corresponds to a EN 300 356-1 V3.2.2 transmission medium requirement of
"1920 kbit/s unrestricted digital information". This call type can be synony-
mous with CC CALL TYPE 1920KBS UNRESTRICTED.

Rules

Rules for call type:

1. Only multi-rate connection types for 384 kbit/s (6 x 64 kbit/s), 1536 kbit/s (24 x
64 kbit/s) and 1920 kbit/s (29 x 64 kbit/s) are supported. For EN 300 356-1 V3.2.2
compliant CCS providers.

ETSI EN 300 356-1 V3.2.2 Header File Listing

274 Version 0.9a Ed. 3

Call Control Interface (CCI) Mapping of CCI Primitives to Q.931

Appendix A Mapping of CCI Primitives to Q.931

The mapping of CCI primitives to Q.931 primitives is shown in Table A.1 . For the most
part, this mapping is a one to one mapping of service primitives, with the exception of
Setup Response and Setup Confirm.

CCI Primitive Q.931 Primitive

CC_INFO_REQ −
CC_INFO_ACK −
CC_BIND_REQ −
CC_BIND_ACK −
CC_UNBIND_REQ −
CC_ADDR_REQ −
CC_ADDR_ACK −
CC_OK_ACK −
CC_ERROR_ACK −

CC_SETUP_REQ Setup Request
CC_SETUP_IND Setup Indication
CC_MORE_INFO_REQ More Info Request
CC_MORE_INFO_IND More Info Indication
CC_INFORMATION_REQ Information Request
CC_INFORMATION_IND Information Indication
CC_INFO_TIMEOUT_IND Timeout Indication
CC_SETUP_RES Proceeding, Alerting, Progress Request; Setup Response
CC_SETUP_CON Proceeding, Alerting, Progress Indication; Setup Confirm
CC_SETUP_COMPLETE_REQ Setup Complete Request
CC_SETUP_COMPLETE_IND Setup Complete Indication

CC_PROCEEDING_REQ Proceeding Request
CC_PROCEEDING_IND Proceeding Indication
CC_ALERTING_REQ Alerting Request
CC_ALERTING_IND Alerting Indication
CC_PROGRESS_REQ Progress Request
CC_PROGRESS_IND Progress Indication
CC_CONNECT_REQ Setup Response
CC_CONNECT_IND Setup Confirm

CC_SUSPEND_REQ Suspend Request, Notify Request
CC_SUSPEND_IND Suspend Indication, Notify Indication
CC_SUSPEND_RES Suspend Response
CC_SUSPEND_CON Suspend Confirm
CC_SUSPEND_REJECT_REQ Suspend Reject Request
CC_SUSPEND_REJECT_IND Suspend Reject Indication
CC_RESUME_REQ Resume Request, Notify Request
CC_RESUME_IND Resume Indication, Notify Indication
CC_RESUME_RES Resume Response
CC_RESUME_CON Resume Confirm
CC_RESUME_REJECT_REQ Resume Reject Request
CC_RESUME_REJECT_IND Resume Reject Indication

CC_CALL_REATTEMPT_IND −
CC_CALL_FAILURE_IND Error Indication, Status Indication, Restart Indication
CC_REJECT_REQ Reject Request, Release Complete Request
CC_REJECT_IND Reject Indication, Release Complete Indication
CC_DISCONNECT_REQ Disconnect Request
CC_DISCONNECT_IND Disconnect Indication
CC_RELEASE_REQ Release Request
CC_RELEASE_IND Release Indication
CC_RELEASE_RES Release Complete Request

-2-CCI Primitive Q.931 Primitive

CC_RELEASE_CON Release Complete Indication

CC_RESTART_REQ Restart Request, Management Restart Request
CC_RESTART_CON Restart Confirm

Table A.1: Mapping of CCI primitives to Q.931 Primitives

2006-01-02 275

Appendix A: Mapping of CCI Primitives to Q.931

In Q.931 the Setup Response and Setup Confirm primitives and issued only once the voice
channel is connected. In OpenSS7 CCI, the CC SETUP RES and CC SETUP CON prim-
itives are used to accept the addressing and assign a stream and correspond to the first
backward message (i.e, Processing, Alerting or Progress Request or Indication; and Setup
Indication or Confirm).

276 Version 0.9a Ed. 3

Call Control Interface (CCI) Mapping of CCI Primitives to Q.764

Appendix B Mapping of CCI Primitives to Q.764

The mapping of CCI primitives to Q.764 primitives is shown in Table B.1 . For the most
part this is a one to one mapping of service primitives, with the exception of Setup Response
and Setup Confirm.

CCI Primitive Q.764 Primitive

CC_INFO_REQ −
CC_INFO_ACK −
CC_BIND_REQ −
CC_BIND_ACK −
CC_UNBIND_REQ −
CC_ADDR_REQ −
CC_ADDR_ACK −
CC_OK_ACK −
CC_ERROR_ACK −

CC_SETUP_REQ Setup Request
CC_SETUP_IND Setup Indication
CC_MORE_INFO_REQ −
CC_MORE_INFO_IND −
CC_INFORMATION_REQ Information Request
CC_INFORMATION_IND Information Indication
CC_INFO_TIMEOUT_IND −
CC_SETUP_RES Proceeding, Alerting, Progress Request; Setup Response
CC_SETUP_CON Proceeding, Alerting, Progress Indication; Setup Confirm

CC_PROCEEDING_REQ Proceeding Request
CC_PROCEEDING_IND Proceeding Indication
CC_ALERTING_REQ Alerting Request
CC_ALERTING_IND Alerting Indication
CC_PROGRESS_REQ Progress Request
CC_PROGRESS_IND Progress Indication
CC_CONNECT_REQ Setup Response
CC_CONNECT_IND Setup Confirm

CC_SUSPEND_REQ Suspend Request
CC_SUSPEND_IND Suspend Indication
CC_RESUME_REQ Resume Request
CC_RESUME_IND Resume Indication

CC_CALL_REATTEMPT_IND Reattempt Indication
CC_CALL_FAILURE_IND Failure Indication
CC_REJECT_REQ Release Request
CC_REJECT_IND Release Indication
CC_RELEASE_REQ Release Request
CC_RELEASE_IND Release Indication
CC_RELEASE_RES Release Response
CC_RELEASE_CON Release Confirm

CC_RESET_REQ Reset Request
CC_RESET_IND Reset Indication
CC_RESET_RES Reset Response
CC_RESET_CON Reset Confirm
CC_BLOCKING_REQ Blocking Request
CC_BLOCKING_IND Blocking Indication
CC_BLOCKING_RES Blocking Response
CC_BLOCKING_CON Blocking Confirm
CC_UNBLOCKING_REQ Unblocking Request
CC_UNBLOCKING_IND Unblocking Indication
CC_UNBLOCKING_RES Unblocking Response

-2-CCI Primitive Q.764 Primitive

CC_UNBLOCKING_CON Unblocking Confirm

CC_QUERY_REQ −
CC_QUERY_IND −
CC_QUERY_RES −
CC_QUERY_CON −

Table B.1: Mapping of CCI primitives to Q.764 Primitives

2006-01-02 277

Appendix B: Mapping of CCI Primitives to Q.764

In Q.764 the Setup Response and Setup Confirm primitives and issued only once the voice
channel is connected. In OpenSS7 CCI, the CC SETUP RES and CC SETUP CON prim-
itives are used to accept the addressing and assign a stream and correspond to the first
backward message (i.e, Processing, Alerting or Progress Request or Indication; and Setup
Indication or Confirm).

278 Version 0.9a Ed. 3

Call Control Interface (CCI) State/Event Tables

Appendix C State/Event Tables

2006-01-02 279

Appendix C: State/Event Tables

280 Version 0.9a Ed. 3

Call Control Interface (CCI) Primitive Precedence Tables

Appendix D Primitive Precedence Tables

2006-01-02 281

Appendix D: Primitive Precedence Tables

282 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

Appendix E CCI Header File Listing

/***

@(#) Id: cci.h,v 0.8.2.15 2003/02/23 10:18:18 brian Exp

Copyright (C) 2001-2006 OpenSS7 Corporation <http://www.openss7.com>

Copyright (C) 1997-2000 Brian F. G. Bidulock <bidulock@dallas.net>

All Rights Reserved.

This program is free software; you can redistribute it and/or modify it under

the terms of the GNU General Public License as published by the Free Software

Foundation; either version 2 of the License, or (at your option) any later

version.

This program is distributed in the hope that it will be useful, but WITHOUT

ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS

FOR A PARTICULAR PURPOSE. See the GNU General Public License for more

details.

You should have received a copy of the GNU General Public License along with

this program; if not, write to the Free Software Foundation, Inc., 675 Mass

Ave, Cambridge, MA 02139, USA.

U.S. GOVERNMENT RESTRICTED RIGHTS. If you are licensing this Software on

behalf of the U.S. Government ("Government"), the following provisions apply

to you. If the Software is supplied by the Department of Defense ("DoD"), it

is classified as "Commercial Computer Software" under paragraph 252.227-7014

of the DoD Supplement to the Federal Acquisition Regulations ("DFARS") (or any

successor regulations) and the Government is acquiring only the license rights

granted herein (the license rights customarily provided to non-Government

users). If the Software is supplied to any unit or agency of the Government

other than DoD, it is classified as "Restricted Computer Software" and the

Government’s rights in the Software are defined in paragraph 52.227-19 of the

Federal Acquisition Regulations ("FAR") (or any success regulations) or, in

the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplement to the FAR

(or any successor regulations).

Commercial licensing and support of this software is available from OpenSS7

Corporation at a fee. See http://www.openss7.com/

Last Modified Date: 2003/02/23 10:18:18 by Author: brian

***/

#ifndef __CCI_H__

#define __CCI_H__

2006-01-02 283

Appendix E: CCI Header File Listing

#define CC_INFO_REQ 0

#define CC_OPTMGMT_REQ 1

#define CC_BIND_REQ 2

#define CC_UNBIND_REQ 3

#define CC_ADDR_REQ 4

#define CC_SETUP_REQ 5

#define CC_MORE_INFO_REQ 6 /* ISDN only */

#define CC_INFORMATION_REQ 7

#define CC_CONT_CHECK_REQ 8 /* ISUP only */

#define CC_CONT_TEST_REQ 9 /* ISUP only */

#define CC_CONT_REPORT_REQ 10 /* ISUP only */

#define CC_SETUP_RES 11

#define CC_PROCEEDING_REQ 12

#define CC_ALERTING_REQ 13

#define CC_PROGRESS_REQ 14

#define CC_IBI_REQ 15 /* (same as CC_DISCONNECT_REQ in ISDN) */

#define CC_DISCONNECT_REQ 15

#define CC_CONNECT_REQ 16

#define CC_SETUP_COMPLETE_REQ 17 /* ISDN only */

#define CC_FORWXFER_REQ 18 /* ISUP only */

#define CC_SUSPEND_REQ 19

#define CC_SUSPEND_RES 20 /* ISDN only */

#define CC_SUSPEND_REJECT_REQ 21 /* ISDN only */

#define CC_RESUME_REQ 22

#define CC_RESUME_RES 23 /* ISDN only */

#define CC_RESUME_REJECT_REQ 24 /* ISDN only */

#define CC_REJECT_REQ 25 /* ISDN only */

#define CC_RELEASE_REQ 26

#define CC_RELEASE_RES 27 /* ISUP only */

#define CC_NOTIFY_REQ 28 /* ISDN only */

#define CC_RESTART_REQ 29 /* ISDN only */

#define CC_RESET_REQ 30 /* ISUP only */

#define CC_RESET_RES 31 /* ISUP only */

#define CC_BLOCKING_REQ 32 /* ISUP only */

#define CC_BLOCKING_RES 33 /* ISUP only */

#define CC_UNBLOCKING_REQ 34 /* ISUP only */

#define CC_UNBLOCKING_RES 35 /* ISUP only */

#define CC_QUERY_REQ 36 /* ISUP only */

#define CC_QUERY_RES 37 /* ISUP only */

#define CC_STOP_REQ 38 /* ISUP only */

#define CC_OK_ACK 64

#define CC_ERROR_ACK 65

#define CC_INFO_ACK 66

#define CC_BIND_ACK 67

#define CC_OPTMGMT_ACK 68

#define CC_ADDR_ACK 69

#define CC_CALL_REATTEMPT_IND 70 /* ISUP only */

#define CC_SETUP_IND 71 /* recv IAM */

#define CC_MORE_INFO_IND 72 /* ISDN only */

#define CC_INFORMATION_IND 73 /* recv SAM */

#define CC_CONT_CHECK_IND 74 /* ISUP only */

#define CC_CONT_TEST_IND 75 /* ISUP only */

#define CC_CONT_REPORT_IND 76 /* ISUP only */

#define CC_SETUP_CON 77

284 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

#define CC_PROCEEDING_IND 78 /* recv ACM w/ no indication if proceeding not sent be-

fore */

#define CC_ALERTING_IND 79 /* recv ACM w/ subscriber free indication */

#define CC_PROGRESS_IND 80 /* recv ACM w/ no indication and ATP parameter and call pro-

ceeding sent */

#define CC_IBI_IND 81 /* recv ACM or CPG w/ inband info (same as CC_DISCONNECT_IND in ISDN) */

#define CC_DISCONNECT_IND 81

#define CC_CONNECT_IND 82

#define CC_SETUP_COMPLETE_IND 83 /* ISDN only */

#define CC_FORWXFER_IND 84 /* ISUP only */

#define CC_SUSPEND_IND 85

#define CC_SUSPEND_CON 86 /* ISDN only */

#define CC_SUSPEND_REJECT_IND 87 /* ISDN only */

#define CC_RESUME_IND 88

#define CC_RESUME_CON 89 /* ISDN only */

#define CC_RESUME_REJECT_IND 90 /* ISDN only */

#define CC_REJECT_IND 91 /* ISDN only */

#define CC_CALL_FAILURE_IND 92 /* ISUP only (ERROR_IND?) */

#define CC_RELEASE_IND 93

#define CC_RELEASE_CON 94

#define CC_NOTIFY_IND 95 /* ISDN only */

#define CC_RESTART_CON 96 /* ISDN only */

#define CC_STATUS_IND 97 /* ISDN only */

#define CC_ERROR_IND 98 /* ISDN only (CALL_FAILURE_IND?) */

#define CC_DATALINK_FAILURE_IND 99 /* ISDN only */

#define CC_INFO_TIMEOUT_IND 100

#define CC_RESET_IND 101 /* ISUP only */

#define CC_RESET_CON 102 /* ISUP only */

#define CC_BLOCKING_IND 103 /* ISUP only */

#define CC_BLOCKING_CON 104 /* ISUP only */

#define CC_UNBLOCKING_IND 105 /* ISUP only */

#define CC_UNBLOCKING_CON 106 /* ISUP only */

#define CC_QUERY_IND 107 /* ISUP only */

#define CC_QUERY_CON 108 /* ISUP only */

#define CC_STOP_IND 109 /* ISUP only */

#define CC_MAINT_IND 110 /* ISUP only */

#define CC_START_RESET_IND 111 /* ISUP only */

/*

* Interface state

*/

enum {

CCS_UNBND,

CCS_IDLE,

CCS_WIND_SETUP,

CCS_WREQ_SETUP,

CCS_WREQ_MORE,

CCS_WIND_MORE,

CCS_WREQ_INFO,

CCS_WIND_INFO,

CCS_WACK_INFO,

CCS_WCON_SREQ,

CCS_WRES_SIND,

CCS_WREQ_CCREP,

CCS_WIND_CCREP,

CCS_WREQ_PROCEED,

2006-01-02 285

Appendix E: CCI Header File Listing

CCS_WIND_PROCEED,

CCS_WACK_PROCEED,

CCS_WREQ_ALERTING,

CCS_WIND_ALERTING,

CCS_WACK_ALERTING,

CCS_WREQ_PROGRESS,

CCS_WIND_PROGRESS,

CCS_WACK_PROGRESS,

CCS_WREQ_IBI,

CCS_WIND_IBI,

CCS_WACK_IBI,

CCS_WREQ_CONNECT,

CCS_WIND_CONNECT,

CCS_WACK_FORWXFER,

CCS_CONNECTED,

CCS_SUSPENDED,

CCS_WCON_RELREQ,

CCS_WRES_RELIND,

CCS_UNUSABLE,

};

typedef struct CC_ok_ack {

ulong cc_primitive; /* always CC_OK_ACK */

ulong cc_correct_prim; /* primitive being acknowledged */

ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_ok_ack_t;

typedef struct CC_error_ack {

ulong cc_primitive; /* always CC_ERROR_ACK */

ulong cc_error_primitive; /* primitive in error */

ulong cc_error_type; /* CCI error code */

ulong cc_unix_error; /* UNIX system error code */

ulong cc_state; /* current state */

ulong cc_call_ref; /* call reference */

} CC_error_ack_t;

enum {

CCSYSERR = 0,

CCOUTSTATE,

CCBADADDR,

CCBADDIGS,

CCBADOPT,

CCNOADDR,

CCADDRBUSY,

CCBADCLR,

CCBADTOK,

CCBADFLAG,

CCNOTSUPP,

CCBADPRIM,

CCACCESS,

};

typedef struct CC_info_req {

ulong cc_primitive; /* always CC_INFO_REQ */

} CC_info_req_t;

286 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

typedef struct CC_info_ack {

ulong cc_primitive; /* always CC_INFO_ACK */

/* FIXME ... more ... */

} CC_info_ack_t;

typedef struct CC_bind_req {

ulong cc_primitive; /* always CC_BIND_REQ */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* offset of address */

ulong cc_setup_ind; /* req # of setup inds to be queued */

ulong cc_bind_flags; /* bind options flags */

} CC_bind_req_t;

/* Flags associated with CC_BIND_REQ */

#define CC_DEFAULT_LISTENER 0x000000001UL

#define CC_TOKEN_REQUEST 0x000000002UL

#define CC_MANAGEMENT 0x000000004UL

#define CC_TEST 0x000000008UL

#define CC_MAINTENANCE 0x000000010UL

typedef struct CC_bind_ack {

ulong cc_primitive; /* always CC_BIND_ACK */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* offset of address */

ulong cc_setup_ind; /* setup indications */

ulong cc_token_value; /* setup response token value */

} CC_bind_ack_t;

typedef struct CC_unbind_req {

ulong cc_primitive; /* always CC_UNBIND_REQ */

} CC_unbind_req_t;

typedef struct CC_addr_req {

ulong cc_primitive; /* always CC_ADDR_REQ */

ulong cc_call_ref; /* call reference */

} CC_addr_req_t;

typedef struct CC_addr_ack {

ulong cc_primitive; /* always CC_ADDR_ACK */

ulong cc_bind_length; /* length of bound address */

ulong cc_bind_offset; /* offset of bound address */

ulong cc_call_ref; /* call reference */

ulong cc_conn_length; /* length of connected address */

ulong cc_conn_offset; /* offset of connected address */

} CC_addr_ack_t;

typedef struct CC_optmgmt_req {

ulong cc_primitive; /* always CC_OPTMGMT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* length of option values */

ulong cc_opt_offset; /* offset of option values */

ulong cc_opt_flags; /* option flags */

} CC_optmgmt_req_t;

typedef struct CC_optmgmt_ack {

2006-01-02 287

Appendix E: CCI Header File Listing

ulong cc_primitive; /* always CC_OPTMGMT_ACK */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* length of option values */

ulong cc_opt_offset; /* offset of option values */

ulong cc_opt_flags; /* option flags */

} CC_optmgmt_ack_t;

typedef struct CC_setup_req {

ulong cc_primitive; /* always CC_SETUP_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */

ulong cc_cdpn_offset; /* called party number offset */

ulong cc_opt_length; /* optional parameters length */

ulong cc_opt_offset; /* optional parameters offset */

ulong cc_addr_length; /* connect to address length */

ulong cc_addr_offset; /* connect to address offset */

} CC_setup_req_t;

typedef struct CC_call_reattempt_ind {

ulong cc_primitive; /* always CC_CALL_REATTEMPT_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_reason; /* reason for reattempt */

} CC_call_reattempt_ind_t;

typedef struct CC_setup_ind {

ulong cc_primitive; /* always CC_SETUP_IND */

ulong cc_call_ref; /* call reference */

ulong cc_call_type; /* call type */

ulong cc_call_flags; /* call flags */

ulong cc_cdpn_length; /* called party number length */

ulong cc_cdpn_offset; /* called party number offset */

ulong cc_opt_length; /* optional parameters length */

ulong cc_opt_offset; /* optional parameters offset */

ulong cc_addr_length; /* connecting address length */

ulong cc_addr_offset; /* connecting address offset */

} CC_setup_ind_t;

typedef struct CC_setup_res {

ulong cc_primitive; /* always CC_SETUP_RES */

ulong cc_call_ref; /* call reference */

ulong cc_token_value; /* call response token value */

} CC_setup_res_t;

typedef struct CC_setup_con {

ulong cc_primitive; /* always CC_SETUP_CON */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* connecting address length */

ulong cc_addr_offset; /* connecting address offset */

} CC_setup_con_t;

typedef struct CC_cont_check_req {

ulong cc_primitive; /* always CC_CONT_CHECK_REQ */

ulong cc_addr_length; /* address length */

288 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

ulong cc_addr_offset; /* address offset */

} CC_cont_check_req_t;

typedef struct CC_cont_check_ind {

ulong cc_primitive; /* always CC_CONT_CHECK_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_check_ind_t;

typedef struct CC_cont_test_req {

ulong cc_primitive; /* always CC_CONT_TEST_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_token_value; /* token value */

} CC_cont_test_req_t;

typedef struct CC_cont_test_ind {

ulong cc_primitive; /* always CC_CONT_TEST_IND */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_cont_test_ind_t;

typedef struct CC_cont_report_req {

ulong cc_primitive; /* always CC_CONT_REPORT_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_req_t;

typedef struct CC_cont_report_ind {

ulong cc_primitive; /* always CC_CONT_REPORT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_result; /* result of continuity check */

} CC_cont_report_ind_t;

typedef struct CC_more_info_req {

ulong cc_primitive; /* always CC_MORE_INFO_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_req_t;

typedef struct CC_more_info_ind {

ulong cc_primitive; /* always CC_MORE_INFO_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_more_info_ind_t;

typedef struct CC_information_req {

ulong cc_primitive; /* always CC_INFORMATION_REQ */

ulong cc_user_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */

ulong cc_subn_offset; /* subsequent number offset */

ulong cc_opt_length; /* optional parameter length */

2006-01-02 289

Appendix E: CCI Header File Listing

ulong cc_opt_offset; /* optional parameter offset */

} CC_information_req_t;

typedef struct CC_information_ind {

ulong cc_primitive; /* always CC_INFORMATION_IND */

ulong cc_call_ref; /* call reference */

ulong cc_subn_length; /* subsequent number length */

ulong cc_subn_offset; /* subsequent number offset */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_information_ind_t;

typedef struct CC_info_timeout_ind {

ulong cc_primitive; /* always CC_INFO_TIMEOUT_IND */

ulong cc_call_ref; /* call reference */

} CC_info_timeout_ind_t;

typedef struct CC_proceeding_req {

ulong cc_primitive; /* always CC_PROCEEDING_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_req_t;

typedef struct CC_proceeding_ind {

ulong cc_primitive; /* always CC_PROCEEDING_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* proceeding flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_proceeding_ind_t;

typedef struct CC_alerting_req {

ulong cc_primitive; /* always CC_ALERTING_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_req_t;

typedef struct CC_alerting_ind {

ulong cc_primitive; /* always CC_ALERTING_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* alerting flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_alerting_ind_t;

typedef struct CC_progress_req {

ulong cc_primitive; /* always CC_PROGRESS_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

290 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

} CC_progress_req_t;

typedef struct CC_progress_ind {

ulong cc_primitive; /* always CC_PROGRESS_IND */

ulong cc_call_ref; /* call reference */

ulong cc_event; /* progress event */

ulong cc_flags; /* progress flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_progress_ind_t;

typedef struct CC_ibi_req {

ulong cc_primitive; /* always CC_IBI_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_req_t;

typedef struct CC_ibi_ind {

ulong cc_primitive; /* always CC_IBI_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* ibi flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_ibi_ind_t;

typedef struct CC_connect_req {

ulong cc_primitive; /* always CC_CONNECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_req_t;

typedef struct CC_connect_ind {

ulong cc_primitive; /* always CC_CONNECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* connect flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_connect_ind_t;

typedef struct CC_setup_complete_req {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_req_t;

typedef struct CC_setup_complete_ind {

ulong cc_primitive; /* always CC_SETUP_COMPLETE_IND */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_setup_complete_ind_t;

2006-01-02 291

Appendix E: CCI Header File Listing

typedef struct CC_forwxfer_req {

ulong cc_primitive; /* always CC_FORWXFER_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_req_t;

typedef struct CC_forwxfer_ind {

ulong cc_primitive; /* always CC_FORWXFER_IND */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_forwxfer_ind_t;

typedef struct CC_suspend_req {

ulong cc_primitive; /* always CC_SUSPEND_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_req_t;

typedef struct CC_suspend_ind {

ulong cc_primitive; /* always CC_SUSPEND_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_ind_t;

typedef struct CC_suspend_res {

ulong cc_primitive; /* always CC_SUSPEND_RES */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_res_t;

typedef struct CC_suspend_con {

ulong cc_primitive; /* always CC_SUSPEND_CON */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_con_t;

typedef struct CC_suspend_reject_req {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_req_t;

typedef struct CC_suspend_reject_ind {

ulong cc_primitive; /* always CC_SUSPEND_REJECT_IND */

ulong cc_call_ref; /* call reference */

292 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_suspend_reject_ind_t;

typedef struct CC_resume_req {

ulong cc_primitive; /* always CC_RESUME_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_req_t;

typedef struct CC_resume_ind {

ulong cc_primitive; /* always CC_RESUME_IND */

ulong cc_call_ref; /* call reference */

ulong cc_flags; /* suspend flags */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_ind_t;

typedef struct CC_resume_res {

ulong cc_primitive; /* always CC_RESUME_RES */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_res_t;

typedef struct CC_resume_con {

ulong cc_primitive; /* always CC_RESUME_CON */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_con_t;

typedef struct CC_resume_reject_req {

ulong cc_primitive; /* always CC_RESUME_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_req_t;

typedef struct CC_resume_reject_ind {

ulong cc_primitive; /* always CC_RESUME_REJECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_resume_reject_ind_t;

typedef struct CC_reject_req {

ulong cc_primitive; /* always CC_REJECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

2006-01-02 293

Appendix E: CCI Header File Listing

ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_req_t;

typedef struct CC_reject_ind {

ulong cc_primitive; /* always CC_REJECT_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_reject_ind_t;

typedef struct CC_error_ind {

ulong cc_primitive; /* always CC_ERROR_IND */

ulong cc_call_ref; /* call reference */

} CC_error_ind_t;

typedef struct CC_call_failure_ind {

ulong cc_primitive; /* always CC_CALL_FAILURE_IND */

ulong cc_call_ref; /* call reference */

ulong cc_reason; /* reason for failure */

ulong cc_cause; /* cause to use in release */

} CC_call_failure_ind_t;

typedef struct CC_disconnect_req {

ulong cc_primitive; /* always CC_DISCONNECT_REQ */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_req_t;

typedef struct CC_disconnect_ind {

ulong cc_primitive; /* always CC_DISCONNECT_IND */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_disconnect_ind_t;

typedef struct CC_release_req {

ulong cc_primitive; /* always CC_RELEASE_REQ */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_req_t;

typedef struct CC_release_ind {

ulong cc_primitive; /* always CC_RELEASE_IND */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_cause; /* cause value */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_ind_t;

294 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

typedef struct CC_release_res {

ulong cc_primitive; /* always CC_RELEASE_RES */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_res_t;

typedef struct CC_release_con {

ulong cc_primitive; /* always CC_RELEASE_CON */

ulong cc_user_ref; /* user call reference */

ulong cc_call_ref; /* call reference */

ulong cc_opt_length; /* optional parameter length */

ulong cc_opt_offset; /* optional parameter offset */

} CC_release_con_t;

typedef struct CC_restart_req {

ulong cc_primitive; /* always CC_RESTART_REQ */

ulong cc_flags; /* restart flags */

ulong cc_addr_length; /* adddress length */

ulong cc_addr_offset; /* adddress offset */

} CC_restart_req_t;

typedef struct CC_restart_ind {

ulong cc_primitive; /* always CC_RESTART_IND */

ulong cc_flags; /* restart flags */

ulong cc_addr_length; /* adddress length */

ulong cc_addr_offset; /* adddress offset */

} CC_restart_ind_t;

typedef struct CC_reset_req {

ulong cc_primitive; /* always CC_RESET_REQ */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_req_t;

typedef struct CC_reset_ind {

ulong cc_primitive; /* always CC_RESET_IND */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_ind_t;

typedef struct CC_reset_res {

ulong cc_primitive; /* always CC_RESET_RES */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_reset_res_t;

typedef struct CC_reset_con {

ulong cc_primitive; /* always CC_RESET_CON */

ulong cc_flags; /* reset flags */

ulong cc_addr_length; /* address length */

2006-01-02 295

Appendix E: CCI Header File Listing

ulong cc_addr_offset; /* address offset */

} CC_reset_con_t;

typedef struct CC_blocking_req {

ulong cc_primitive; /* always CC_BLOCKING_REQ */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_req_t;

typedef struct CC_blocking_ind {

ulong cc_primitive; /* always CC_BLOCKING_IND */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_ind_t;

typedef struct CC_blocking_res {

ulong cc_primitive; /* always CC_BLOCKING_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_res_t;

typedef struct CC_blocking_con {

ulong cc_primitive; /* always CC_BLOCKING_CON */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_blocking_con_t;

typedef struct CC_unblocking_req {

ulong cc_primitive; /* always CC_UNBLOCKING_REQ */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_req_t;

typedef struct CC_unblocking_ind {

ulong cc_primitive; /* always CC_UNBLOCKING_IND */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_ind_t;

typedef struct CC_unblocking_res {

ulong cc_primitive; /* always CC_UNBLOCKING_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_unblocking_res_t;

typedef struct CC_unblocking_con {

ulong cc_primitive; /* always CC_UNBLOCKING_CON */

ulong cc_flags; /* unblocking flags */

ulong cc_addr_length; /* address length */

296 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

ulong cc_addr_offset; /* address offset */

} CC_unblocking_con_t;

typedef struct CC_query_req {

ulong cc_primitive; /* always CC_QUERY_REQ */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_req_t;

typedef struct CC_query_ind {

ulong cc_primitive; /* always CC_QUERY_IND */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_ind_t;

typedef struct CC_query_res {

ulong cc_primitive; /* always CC_QUERY_RES */

ulong cc_flags; /* blocking flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_res_t;

typedef struct CC_query_con {

ulong cc_primitive; /* always CC_QUERY_CON */

ulong cc_flags; /* query flags */

ulong cc_addr_length; /* address length */

ulong cc_addr_offset; /* address offset */

} CC_query_con_t;

typedef struct CC_maint_ind {

ulong cc_primitive; /* always CC_MAINT_IND */

ulong cc_reason; /* reason for indication */

ulong cc_call_ref; /* call reference */

ulong cc_addr_length; /* length of address */

ulong cc_addr_offset; /* length of address */

} CC_maint_ind_t;

union CC_primitives {

ulong cc_primitive;

CC_ok_ack_t ok_ack;

CC_error_ack_t error_ack;

CC_info_req_t info_req;

CC_info_ack_t info_ack;

CC_bind_req_t bind_req;

CC_bind_ack_t bind_ack;

CC_unbind_req_t unbind_req;

CC_addr_req_t addr_req;

CC_addr_ack_t addr_ack;

CC_optmgmt_req_t optmgmt_req;

CC_optmgmt_ack_t optmgmt_ack;

CC_setup_req_t setup_req;

CC_call_reattempt_ind_t call_reattempt_ind;

CC_setup_ind_t setup_ind;

CC_setup_res_t setup_res;

2006-01-02 297

Appendix E: CCI Header File Listing

CC_setup_con_t setup_con;

CC_cont_check_req_t cont_check_req;

CC_cont_check_ind_t cont_check_ind;

CC_cont_test_req_t cont_test_req;

CC_cont_test_ind_t cont_test_ind;

CC_cont_report_req_t cont_report_req;

CC_cont_report_ind_t cont_report_ind;

CC_more_info_req_t more_info_req;

CC_more_info_ind_t more_info_ind;

CC_information_req_t information_req;

CC_information_ind_t information_ind;

CC_proceeding_req_t proceeding_req;

CC_proceeding_ind_t proceeding_ind;

CC_alerting_req_t alerting_req;

CC_alerting_ind_t alerting_ind;

CC_progress_req_t progress_req;

CC_progress_ind_t progress_ind;

CC_ibi_req_t ibi_req;

CC_ibi_ind_t ibi_ind;

CC_connect_req_t connect_req;

CC_connect_ind_t connect_ind;

CC_setup_complete_req_t setup_complete_req;

CC_setup_complete_ind_t setup_complete_ind;

CC_forwxfer_req_t forwxfer_req;

CC_forwxfer_ind_t forwxfer_ind;

CC_suspend_req_t suspend_req;

CC_suspend_ind_t suspend_ind;

CC_suspend_res_t suspend_res;

CC_suspend_con_t suspend_con;

CC_suspend_reject_req_t suspend_reject_req;

CC_suspend_reject_ind_t suspend_reject_ind;

CC_resume_req_t resume_req;

CC_resume_ind_t resume_ind;

CC_resume_res_t resume_res;

CC_resume_con_t resume_con;

CC_resume_reject_req_t resume_reject_req;

CC_resume_reject_ind_t resume_reject_ind;

CC_reject_req_t reject_req;

CC_reject_ind_t reject_ind;

CC_error_ind_t error_ind;

CC_call_failure_ind_t call_failure_ind;

CC_disconnect_req_t disconnect_req;

CC_disconnect_ind_t disconnect_ind;

CC_release_req_t release_req;

CC_release_ind_t release_ind;

CC_release_res_t release_res;

CC_release_con_t release_con;

CC_restart_req_t restart_req;

CC_restart_ind_t restart_ind;

CC_reset_req_t reset_req;

CC_reset_ind_t reset_ind;

CC_reset_res_t reset_res;

CC_reset_con_t reset_con;

CC_blocking_req_t blocking_req;

CC_blocking_ind_t blocking_ind;

CC_blocking_res_t blocking_res;

298 Version 0.9a Ed. 3

Call Control Interface (CCI) CCI Header File Listing

CC_blocking_con_t blocking_con;

CC_unblocking_req_t unblocking_req;

CC_unblocking_ind_t unblocking_ind;

CC_unblocking_res_t unblocking_res;

CC_unblocking_con_t unblocking_con;

CC_query_req_t query_req;

CC_query_ind_t query_ind;

CC_query_res_t query_res;

CC_query_con_t query_con;

CC_maint_ind_t maint_ind;

};

#endif /* __CCI_H__ */

2006-01-02 299

Appendix E: CCI Header File Listing

300 Version 0.9a Ed. 3

Call Control Interface (CCI) License

License

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

Terms and Conditions for Copying, Distribution and Modification

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a

2006-01-02 301

License texi/fdl.texi

textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

302 Version 0.9a Ed. 3

Call Control Interface (CCI) License

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

2006-01-02 303

License texi/fdl.texi

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

304 Version 0.9a Ed. 3

Call Control Interface (CCI) License

added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

2006-01-02 305

License texi/fdl.texi

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

END OF TERMS AND CONDITIONS

306 Version 0.9a Ed. 3

http://www.gnu.org/copyleft/

Call Control Interface (CCI) License

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead
of “Front-Cover Texts being list”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

2006-01-02 307

License

308 Version 0.9a Ed. 3

Call Control Interface (CCI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of
the signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer
of data between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling
data link interface.

SDL user The user-level application or user-level or kernel-level protocol that accesses the
services of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user ini-
tializes a stream and attaches a PPA address to the stream. Primitives in this
phase generate local operations only.

PPA The point at which a system attaches itself to a physical communications
medium.

PPA identifier
An identifier of a particular physical medium over which communication tran-
spires.

2006-01-02 309

Glossary

310 Version 0.9a Ed. 3

Call Control Interface (CCI) Acronyms

Acronyms

SDLI Signalling Data Link Interface
SDL Signalling Data Link
SDL SDU Signalling Data Link Service Data Unit
ITU-T International Telecommunications Union

- Telecom Sector
PPA Physical Point of Attachment

2006-01-02 311

Acronyms

312 Version 0.9a Ed. 3

Call Control Interface (CCI) References

References

1. ITU-T Recommendation X.210, (Geneva, 1993), “Information Technology — Open
Systems Interconnection — Basic reference model: Conventions for the definition of
OSI services,” ISO/IEC 10731:1994.

2. ITU-T Recommendation X.217, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Service definition for the Association Control Service Ele-
ment,” ISO/IEC 8649:1996.

3. ITU-T Recommendation X.227, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connection-oriented protocol for the Association Control
Service Element: Protocol Specification,” ISO/IEC 8650-1.

4. ITU-T Recommendation X.237, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless protocol for the Association Control Service
Element: Protocol Specification,” ISO/IEC 10035-1 : 1995.

5. ITU-T Recommendation X.216, (Geneva, 1994), “Information Technology — Open
Systems Interconnection — Presentation service definition,” ISO/IEC 8822:1994.

6. ITU-T Recommendation X.226, (Geneva, 1994), “Information Technology — Open
Systems Interconnection — Connection-oriented presentation protocol: Protocol spec-
ification,” ISO/IEC 8823-1:1994.

7. ITU-T Recommendation X.236, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless presentation protocol: Protocol specifica-
tion,” ISO/IEC 9576-1:1995.

8. ITU-T Recommendation X.215, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Session service definition,” ISO/IEC 8326:1996.

9. ITU-T Recommendation X.225, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connection-oriented session protocol: Protocol specifica-
tion,” ISO/IEC 8327-1:1996.

10. ITU-T Recommendation X.235, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Connectionless session protocol: Protocol specification,”
ISO/IEC 9548-1:1995.

11. ITU-T Recommendation X.214, (Geneva, 1995), “Information Technology — Open
Systems Interconnection — Transport service definition,” ISO/IEC 8072:1996.

12. ITU-T Recommendation X.224
13. ITU-T Recommendation Q.700
14. ITU-T Recommendation Q.701
15. ITU-T Recommendation Q.702
16. ITU-T Recommendation Q.703
17. ITU-T Recommendation Q.704
18. Geoffrey Gerrien, “CDI - Application Program Interface Guide,” Gcom, Inc., March

1999.
19. ITU-T Recommendation Q.771, (Geneva, 1993), “Signalling System No. 7 — Func-

tional description of transaction capabilities,” (White Book).

2006-01-02 313

References

314 Version 0.9a Ed. 3

Call Control Interface (CCI) Indices

Indices

2006-01-02 315

Indices

Concept Index

L
license, FDL. 301
license, GNU Free Documentation License 301

S

STREAMS . 1, 3, 4, 5, 195

316 Version 0.9a Ed. 3

Call Control Interface (CCI) Indices

Type Index

C
CC_addr_ack_t . 55
CC_addr_req_t . 54
CC_alerting_ind_t . 105
CC_alerting_req_t . 103
CC_bind_ack_t . 59
CC_bind_req_t . 56
CC_blocking_con_t . 168
CC_blocking_ind_t . 165
CC_blocking_req_t . 162
CC_blocking_res_t . 166
CC_call_failure_ind_t . 142
CC_call_reattempt_ind_t 80
CC_connect_ind_t . 114
CC_connect_req_t . 112
CC_cont_check_ind_t 84, 186
CC_cont_check_req_t 82, 184
CC_cont_report_ind_t 91, 193
CC_cont_report_req_t 89, 191
CC_cont_test_ind_t . 88, 190
CC_cont_test_req_t . 86, 188
CC_disconnect_ind_t . 146
CC_disconnect_req_t . 144
CC_error_ack_t . 65
CC_forwxfer_ind_t . 120
CC_forwxfer_req_t . 118
CC_ibi_ind_t . 111
CC_ibi_req_t . 109
CC_info_ack_t . 53
CC_info_req_t . 52
CC_info_timeout_ind_t . 99
CC_information_ind_t . 97
CC_information_req_t . 95
CC_maint_ind_t . 183
CC_more_info_ind_t . 94
CC_more_info_req_t . 92
CC_ok_ack_t . 67
CC_optmgmt_ack_t . 64
CC_optmgmt_req_t . 62
CC_proceeding_ind_t . 102
CC_proceeding_req_t . 100
CC_progress_ind_t . 108
CC_progress_req_t . 106
CC_query_con_t . 182
CC_query_ind_t . 179
CC_query_req_t . 176
CC_query_res_t . 180
CC_reject_ind_t . 141
CC_reject_req_t . 139
CC_release_con_t . 153
CC_release_ind_t . 149
CC_release_req_t . 147
CC_release_res_t . 151

CC_reset_con_t . 161
CC_reset_ind_t . 158
CC_reset_req_t . 156
CC_reset_res_t . 159
CC_restart_ind_t . 155
CC_restart_req_t . 154
CC_resume_con_t . 135
CC_resume_ind_t . 132
CC_resume_reject_ind_t 138
CC_resume_reject_req_t 136
CC_resume_req_t . 130
CC_resume_res_t . 133
CC_setup_complete_ind_t 117
CC_setup_complete_req_t 115
CC_setup_con_t . 78
CC_setup_ind_t . 73
CC_setup_req_t . 68
CC_setup_res_t . 76
CC_suspend_con_t . 126
CC_suspend_ind_t . 123
CC_suspend_reject_ind_t 129
CC_suspend_reject_req_t 127
CC_suspend_req_t . 121
CC_suspend_res_t . 124
CC_unbind_req_t . 61
CC_unblocking_con_t . 175
CC_unblocking_ind_t . 172
CC_unblocking_req_t . 169
CC_unblocking_res_t . 173

I
isdn_addr_t . 197
isup_addr_t . 223

S
struct CC_addr_ack . 55
struct CC_addr_req . 54
struct CC_alerting_ind . 105
struct CC_alerting_req . 103
struct CC_bind_ack . 59
struct CC_bind_req . 56
struct CC_blocking_con . 168
struct CC_blocking_ind . 165
struct CC_blocking_req . 162
struct CC_blocking_res . 166
struct CC_call_failure_ind 142
struct CC_call_reattempt_ind 80
struct CC_connect_ind . 114
struct CC_connect_req . 112
struct CC_cont_check_ind 84, 186

2006-01-02 317

Indices

struct CC_cont_check_req 82, 184
struct CC_cont_report_ind 91, 193
struct CC_cont_report_req 89, 191
struct CC_cont_test_ind 88, 190
struct CC_cont_test_req 86, 188
struct CC_disconnect_ind 146
struct CC_disconnect_req 144
struct CC_error_ack . 65
struct CC_forwxfer_ind . 120
struct CC_forwxfer_req . 118
struct CC_ibi_ind . 111
struct CC_ibi_req . 109
struct CC_info_ack . 53
struct CC_info_req . 52
struct CC_info_timeout_ind 99
struct CC_information_ind 97
struct CC_information_req 95
struct CC_maint_ind . 183
struct CC_more_info_ind . 94
struct CC_more_info_req . 92
struct CC_ok_ack . 67
struct CC_optmgmt_ack . 64
struct CC_optmgmt_req . 62
struct CC_proceeding_ind 102
struct CC_proceeding_req 100
struct CC_progress_ind . 108
struct CC_progress_req . 106
struct CC_query_con . 182
struct CC_query_ind . 179
struct CC_query_req . 176
struct CC_query_res . 180
struct CC_reject_ind . 141
struct CC_reject_req . 139
struct CC_release_con . 153

struct CC_release_ind . 149
struct CC_release_req . 147
struct CC_release_res . 151
struct CC_reset_con . 161
struct CC_reset_ind . 158
struct CC_reset_req . 156
struct CC_reset_res . 159
struct CC_restart_ind . 155
struct CC_restart_req . 154
struct CC_resume_con . 135
struct CC_resume_ind . 132
struct CC_resume_reject_ind 138
struct CC_resume_reject_req 136
struct CC_resume_req . 130
struct CC_resume_res . 133
struct CC_setup_complete_ind 117
struct CC_setup_complete_req 115
struct CC_setup_con . 78
struct CC_setup_ind . 73
struct CC_setup_req . 68
struct CC_setup_res . 76
struct CC_suspend_con . 126
struct CC_suspend_ind . 123
struct CC_suspend_reject_ind 129
struct CC_suspend_reject_req 127
struct CC_suspend_req . 121
struct CC_suspend_res . 124
struct CC_unbind_req . 61
struct CC_unblocking_con 175
struct CC_unblocking_ind 172
struct CC_unblocking_req 169
struct CC_unblocking_res 173
struct isdn_addr . 197
struct isup_addr . 223

318 Version 0.9a Ed. 3

Call Control Interface (CCI) Indices

Variable Index

C
cc_addr_length 56, 59, 69, 74, 78, 82, 84, 88,

154, 155, 156, 158, 159, 161, 162, 165, 166,
168, 169, 172, 173, 175, 176, 179, 180, 182,
183, 184, 186, 190, 197, 200, 208, 222, 223,
226, 228, 232, 234, 236, 237, 238, 239, 253,
254, 255, 256, 257, 258, 259, 260

cc_addr_offset 56, 59, 69, 74, 78, 82, 84, 88,
154, 155, 156, 158, 159, 161, 162, 165, 166,
168, 169, 172, 173, 175, 176, 179, 180, 182,
183, 184, 186, 190, 197, 200, 209, 222, 223,
226, 228, 232, 234, 236, 237, 238, 239, 253,
254, 255, 256, 257, 258, 259, 260

cc_bind_flags . 57, 226
cc_bind_length . 55
cc_bind_offset . 55
cc_call_flags 69, 73, 202, 207, 208, 230, 232
cc_call_ref 54, 55, 62, 65, 67, 73, 76, 78, 84,

86, 88, 89, 91, 92, 97, 99, 100, 102, 103, 105,
106, 108, 109, 111, 112, 114, 115, 117, 118,
120, 121, 123, 124, 126, 127, 129, 130, 132,
133, 135, 136, 138, 139, 142, 144, 146, 147,
149, 151, 153, 183, 186, 188, 190, 191, 193,
232, 233, 234, 237, 238, 239, 240, 241

cc_call_type 68, 73, 202, 206, 208, 229, 232,
271

CC_CALL_TYPE_10x64KBS_UNRESTRICTED . . 204, 272
CC_CALL_TYPE_11x64KBS_UNRESTRICTED . . 204, 272
CC_CALL_TYPE_128KBS_UNRESTRICTED 202
CC_CALL_TYPE_12x64KBS_UNRESTRICTED . . 204, 272
CC_CALL_TYPE_13x64KBS_UNRESTRICTED . . 204, 272
CC_CALL_TYPE_14x64KBS_UNRESTRICTED . . 204, 272
CC_CALL_TYPE_1536KBS_UNRESTRICTED . . . 202, 230
CC_CALL_TYPE_15x64KBS_UNRESTRICTED . . 204, 273
CC_CALL_TYPE_16x64KBS_UNRESTRICTED . . 204, 273
CC_CALL_TYPE_17x64KBS_UNRESTRICTED . . 204, 273
CC_CALL_TYPE_18x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_1920KBS_UNRESTRICTED . . . 203, 230
CC_CALL_TYPE_19x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_20x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_21x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_22x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_23x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_24x64KBS_UNRESTRICTED . . 205, 273
CC_CALL_TYPE_25x64KBS_UNRESTRICTED . . 205, 274
CC_CALL_TYPE_26x64KBS_UNRESTRICTED . . 206, 274
CC_CALL_TYPE_27x64KBS_UNRESTRICTED . . 206, 274
CC_CALL_TYPE_28x64KBS_UNRESTRICTED . . 206, 274
CC_CALL_TYPE_29x64KBS_UNRESTRICTED . . 206, 274
CC_CALL_TYPE_2x64KBS_UNRESTRICTED . . . 203, 229
CC_CALL_TYPE_3_1kHZ_AUDIO 202, 229
CC_CALL_TYPE_30x64KBS_UNRESTRICTED 206
CC_CALL_TYPE_384KBS_UNRESTRICTED 202, 229

CC_CALL_TYPE_3x64KBS_UNRESTRICTED . . . 203, 271
CC_CALL_TYPE_4x64KBS_UNRESTRICTED . . . 203, 271
CC_CALL_TYPE_5x64KBS_UNRESTRICTED . . . 203, 272
CC_CALL_TYPE_64KBS_PREFERRED 229
CC_CALL_TYPE_64KBS_UNRESTRICTED 202, 229
CC_CALL_TYPE_6x64KBS_UNRESTRICTED . . . 203, 272
CC_CALL_TYPE_7x64KBS_UNRESTRICTED . . . 203, 272
CC_CALL_TYPE_8x64KBS_UNRESTRICTED . . . 203, 272
CC_CALL_TYPE_9x64KBS_UNRESTRICTED . . . 203, 272
CC_CALL_TYPE_SPEECH 202, 229
CC_CAUS_ACCESS_INFO_DISCARDED 217, 250
CC_CAUS_ADDRESS_INCOMPLETE 217, 250
CC_CAUS_BC_NOT_AUTHORIZED 217, 251
CC_CAUS_BC_NOT_AVAILABLE 218, 251
CC_CAUS_BC_NOT_IMPLEMENTED 218, 251
CC_CAUS_CALL_REJECTED 217, 250
CC_CAUS_CALL_TYPE_INCOMPATIBLE 219, 252
CC_CAUS_EXCHANGE_ROUTING_ERROR 219, 252
CC_CAUS_FACILITY_NOT_IMPLEMENTED 218, 251
CC_CAUS_FACILITY_REJECTED 217, 250
CC_CAUS_GROUP_RESTRICTIONS 219, 252
CC_CAUS_ICC_BARRED WITHIN_CUG 217, 251
CC_CAUS_INCOMPATIBLE_DESTINATION 218, 251
CC_CAUS_INCONSISTENCY 218, 251
CC_CAUS_INTERWORKING 218, 252
CC_CAUS_INVALID_MESSAGE 218, 251
CC_CAUS_INVALID_TRANSIT_NTWK_SELECTION

. 218, 251
CC_CAUS_LNP_QOR_NUMBER_NOT_FOUND 219, 252
CC_CAUS_MESSAGE_DISCARDED 218, 252
CC_CAUS_MESSAGE_TYPE_NOT_IMPLEMENTED 218,

251
CC_CAUS_MISDIALLED_TRUNK_PREFIX 216, 249
CC_CAUS_MISROUTED_CALL_TO_PORTED_NUMBER 26

. 219, 252
CC_CAUS_NETWORK_OUT_OF_ORDER 217, 250
CC_CAUS_NO_ANSWER . 216, 250
CC_CAUS_NO_CCT_AVAILABLE 217, 250
CC_CAUS_NO_ROUTE_TO_DESTINATION 216, 249
CC_CAUS_NO_ROUTE_TO_TRANSIT_NETWORK 216,

249
CC_CAUS_NO_USER_RESPONDING 216, 250
CC_CAUS_NON_EXISTENT_CUG 218, 251
CC_CAUS_NORMAL_CALL_CLEARING 216, 250
CC_CAUS_NORMAL_UNSPECIFIED 217, 250
CC_CAUS_NOT_SUBSCRIBED 217, 251
CC_CAUS_NUMBER_CHANGED 217, 250
CC_CAUS_OGC_BARRED_WITHIN_CUG 217, 251
CC_CAUS_OUT_OF_ORDER 217, 250
CC_CAUS_PARAMETER_NOT_IMPLEMENTED . . . 218, 252
CC_CAUS_PARAMETER_PASSED_ON 218, 252
CC_CAUS_PRECEDENCE_CALL_BLOCKED 217, 219,

251, 252

2006-01-02 319

Indices

CC_CAUS_PREEMPTION 216, 219, 249, 252
CC_CAUS_PREEMPTION_CCT_RESERVED 216, 250
CC_CAUS_PROTOCOL_ERROR 218, 252
CC_CAUS_RECOVERY_ON_TIMER_EXPIRY 218, 252
CC_CAUS_REDIRECT . 217, 250
CC_CAUS_REQUESTED_CCT_UNAVAILABLE . . . 217, 250
CC_CAUS_RESOURCE_UNAVAILABLE 217, 251
CC_CAUS_RESTRICTED_BC_ONLY 218, 251
CC_CAUS_SEND_SPECIAL_INFO_TONE 216, 249
CC_CAUS_SERIVCE_OPTION_NOT_IMPLEMENTED

. 218, 251
CC_CAUS_SERVICE_OPTION_NOT_AVAILABLE 218,

251
CC_CAUS_SUBSCRIBER_ABSENT 216, 250
CC_CAUS_SWITCHING_EQUIP_CONGESTION . . 217, 250
CC_CAUS_TEMPORARY_FAILURE 217, 250
CC_CAUS_UNALLOCATED_DEST_NUMBER 219, 252
CC_CAUS_UNALLOCATED_NUMBER 216, 249
CC_CAUS_UNKNOWN_BUSINESS_GROUP 219, 252
CC_CAUS_USER_BUSY . 216, 250
CC_CAUS_USER_NOT_MEMBER_OF_CUG 218, 251
cc_cause . . . 127, 129, 136, 138, 139, 141, 142, 144,

146, 147, 149, 214, 215, 216, 219, 220, 221,
248, 249, 252

cc_cdpn_length 69, 73, 207, 208, 231, 232
cc_cdpn_offset 69, 73, 207, 208, 231, 233
CC_CHANNEL . 200
CC_CHANNEL_GROUP . 200
cc_conn_length . 55
cc_conn_offset . 55
cc_correct_prim . 67
CC_DEFAULT_LISTENER 57, 200, 226
cc_error_primitive . 65
cc_error_type . 65
cc_event . 106, 108, 243, 245
cc_flags . . . 100, 102, 103, 105, 106, 108, 109, 111,

112, 114, 121, 123, 130, 132, 154, 155, 156,
158, 159, 161, 162, 165, 166, 168, 169, 172,
173, 175, 176, 179, 180, 182, 213, 214, 222,
241, 244, 245, 246, 247, 253, 254, 255, 256,
257, 258, 259, 260

CC_ITC_WITH_TONES_AND_ANNOUNCEMENTS" 206
CC_MAINTENANCE . 57, 227
CC_MANAGEMENT . 57, 227
cc_opt_flags . 62
cc_opt_length 62, 69, 74, 92, 94, 95, 97, 100,

102, 103, 105, 106, 108, 109, 111, 112, 114,
115, 117, 118, 120, 121, 123, 124, 126, 127,
129, 130, 132, 133, 135, 136, 138, 139, 141,
142, 144, 146, 147, 149, 151, 153, 199, 225, 233

cc_opt_offset 62, 69, 74, 92, 94, 95, 97, 100,
102, 103, 105, 106, 108, 109, 111, 112, 114,
115, 117, 118, 120, 121, 123, 124, 126, 127,
129, 130, 132, 133, 135, 136, 138, 139, 141,
142, 144, 146, 147, 149, 151, 153, 199, 225, 233

cc_primitive . . . 52, 53, 54, 55, 56, 59, 61, 62, 65,
67, 68, 73, 76, 78, 80, 82, 84, 86, 88, 89, 91, 92,
94, 95, 97, 99, 100, 102, 103, 105, 106, 108,
109, 111, 112, 114, 115, 117, 118, 120, 121,
123, 124, 126, 127, 129, 130, 132, 133, 135,
136, 138, 139, 141, 142, 144, 146, 147, 149,
151, 153, 154, 155, 156, 158, 159, 161, 162,
165, 166, 168, 169, 172, 173, 175, 176, 179,
180, 182, 183, 184, 186, 188, 190, 191, 193

cc_reason 80, 142, 183, 220, 235
cc_result 89, 91, 191, 193, 239
cc_setup_ind 56, 59, 200, 226, 228
cc_state . 65, 67
cc_subn_length 95, 97, 240, 241
cc_subn_offset 95, 97, 240, 241
CC_SUSRES_NETWORK_INITIATED 246, 247
CC_TEST . 57, 227
CC_TOKEN_REQUEST . 57, 227
cc_token_value 59, 76, 86, 188, 234
CC_TRUNK_GROUP . 200
cc_unix_error . 65
cc_user_ref 68, 78, 80, 89, 94, 95, 141, 147,

149, 151, 153, 191, 230, 234, 235, 238
CCACCESS . . 58, 63, 66, 72, 83, 87, 93, 96, 101, 104,

107, 110, 113, 116, 128, 131, 134, 137, 140,
145, 148, 157, 160, 163, 167, 170, 174, 177,
181, 185, 189

CCADDRBUSY . 58, 66, 71
CCBADADDR . . 58, 66, 71, 83, 96, 157, 160, 163, 170,

177, 185
CCBADCLR . . . 54, 63, 66, 71, 77, 87, 90, 93, 96, 101,

104, 107, 110, 113, 116, 128, 131, 134, 137,
140, 145, 148, 189, 192

CCBADDIGS . 66, 71
CCBADFLAG 58, 63, 66, 101, 104, 107, 110, 113
CCBADOPT . . 63, 66, 71, 96, 101, 104, 107, 110, 113,

116, 128, 131, 134, 137, 140, 145, 148
CCBADPRIM 58, 63, 66, 72, 77, 90, 93, 96, 101,

104, 107, 110, 113, 116, 128, 131, 134, 137,
140, 145, 148, 192

CCBADTOK . 66, 77
CCFLAGS . 163, 170, 177
CCNOADDR . . . 58, 66, 71, 83, 96, 157, 160, 163, 170,

177, 185
CCNOTSUPP . . 66, 83, 87, 93, 116, 128, 131, 134, 137,

140, 145, 148, 157, 160, 163, 170, 177, 185, 189
CCOUTSTATE . . 58, 61, 63, 65, 71, 77, 83, 87, 90, 93,

96, 101, 104, 107, 110, 113, 116, 119, 122, 125,
128, 131, 134, 137, 140, 145, 148, 152, 157,
160, 164, 167, 171, 174, 178, 181, 185, 189, 192

CCSYSERR . . 54, 58, 61, 63, 65, 71, 77, 83, 87, 90, 93,
96, 101, 104, 107, 110, 113, 116, 119, 122, 125,
128, 131, 134, 137, 140, 145, 148, 152, 157,
160, 164, 167, 171, 174, 178, 181, 185, 189, 192

cic . 197, 223

320 Version 0.9a Ed. 3

Call Control Interface (CCI) Indices

I
id . 197, 223
ISDN_SCOPE_CH . 198
ISDN_SCOPE_DF . 198
ISDN_SCOPE_EG . 198
ISDN_SCOPE_FG . 198
ISDN_SCOPE_TG . 198
ISDN_SCOPE_XG . 198
ISUP_BCI_CHARGE . 242
ISUP_BCI_CONNECT_FREE . 242
ISUP_BCI_E2E_INFORMATION_AVAILABLE 242
ISUP_BCI_HOLDING_REQUESTED 242
ISUP_BCI_IC_ECHO_CONTROL_DEVICE 242
ISUP_BCI_INTERWORKING_ENCOUNTERED 242
ISUP_BCI_ISDN_USER_PART_ALL_THE_WAY 242
ISUP_BCI_NO_CHARGE . 242
ISUP_BCI_ORDINARY_SUBSCRIBER 242
ISUP_BCI_PASS_ALONG_E2E_METHOD_AVAILABLE

. 242
ISUP_BCI_PAYPHONE . 242
ISUP_BCI_SCCP_ALL_METHODS_AVAILABLE 243
ISUP_BCI_SCCP_CLNS_METHOD_AVAILABLE 243
ISUP_BCI_SCCP_CONS_METHOD_AVAILABLE 243
ISUP_BCI_SCCP_E2E_METHOD_AVAILABLE 242
ISUP_BCI_SUBSCRIBER_FREE 242
ISUP_BCI_TERMINATING_ACCESS_ISDN 242
ISUP_CALL_FAILURE_BLOCKING 248
ISUP_CALL_FAILURE_CIRCUIT_BUSY 249
ISUP_CALL_FAILURE_COT_FAILURE 248
ISUP_CALL_FAILURE_ERROR 220
ISUP_CALL_FAILURE_RECV_RLC 248
ISUP_CALL_FAILURE_RESET 248
ISUP_CALL_FAILURE_RESTART 220
ISUP_CALL_FAILURE_STATUS 220
ISUP_CALL_FAILURE_T2_TIMEOUT 248
ISUP_CALL_FAILURE_T3_TIMEOUT 248
ISUP_CALL_FAILURE_T35_TIMEOUT 249
ISUP_CALL_FAILURE_T38_TIMEOUT 249
ISUP_CALL_FAILURE_T6_TIMEOUT 248
ISUP_CALL_FAILURE_T7_TIMEOUT 248
ISUP_CALL_FAILURE_T8_TIMEOUT 249
ISUP_CALL_FAILURE_T9_TIMEOUT 249
ISUP_COT_FAILURE . 239
ISUP_COT_SUCCESS . 239

ISUP_EVNT_ALERTING . 244
ISUP_EVNT_CALL_FORWARDED_ON_BUSY 244
ISUP_EVNT_CALL_FORWARDED_ON_NO_ANSWER . . . 244
ISUP_EVNT_CALL_FORWARDED_UNCONDITIONAL . . 244
ISUP_EVNT_IBI . 244
ISUP_EVNT_PRESENTATION_RESTRICTED . . . 244, 245
ISUP_EVNT_PROGRESS . 244
ISUP_FCI_E2E_INFORMATION_AVAILABLE 231
ISUP_FCI_INTERNATIONAL_CALL 230
ISUP_FCI_INTERWORKING_ENCOUNTERED 231
ISUP_FCI_ISDN_USER_PART_ALL_THE_WAY 231
ISUP_FCI_ORIGINATING_ACCESS_ISDN 231
ISUP_FCI_PASS_ALONG_E2E_METHOD_AVAILABLE

. 230
ISUP_FCI_SCCP_ALL_METHODS_AVAILABLE 231
ISUP_FCI_SCCP_CLNS_METHOD_AVAILABLE 231
ISUP_FCI_SCCP_CONS_METHOD_AVAILABLE 231
ISUP_FCI_SCCP_E2E_METHOD_AVAILABLE 230
ISUP_GROUP . . 253, 254, 255, 256, 257, 258, 259, 260
ISUP_HARDWARE_FAILURE_ORIENTED 255, 256,

257, 258
ISUP_MAINTENANCE_ORIENTED . . . 255, 256, 257, 258
ISUP_NCI_CONT_CHECK_PREVIOUS 230
ISUP_NCI_CONT_CHECK_REQUIRED 230
ISUP_NCI_OG_ECHO_CONTROL_DEVICE 230
ISUP_NCI_ONE_SATELLITE_CCT 230
ISUP_NCI_TWO_SATELLITE_CCT 230
ISUP_REATTEMPT_BLOCKING 235
ISUP_REATTEMPT_CIRCUIT_BUSY 235
ISUP_REATTEMPT_COT_FAILURE 235
ISUP_REATTEMPT_DUAL_SEIZURE 235
ISUP_REATTEMPT_RESET. 235
ISUP_REATTEMPT_T24_TIMEOUT 235
ISUP_REATTEMPT_UNEXPECTED 235
ISUP_SCOPE_CG . 224
ISUP_SCOPE_CT . 224
ISUP_SCOPE_DF . 225
ISUP_SCOPE_SP . 224
ISUP_SCOPE_SR . 224
ISUP_SCOPE_TG . 224

S
scope . 197, 223

(Index is nonexistent)

2006-01-02 321

Indices

Primitive Index

CC ADDR ACK . 12, 54, 55
CC ADDR REQ . 12, 54, 55
CC ALERTING IND . . 21, 39, 105, 212, 240, 243,

245
CC ALERTING REQ . . 20, 38, 103, 212, 241, 243,

244
CC BIND ACK 13, 55, 57, 59, 60, 74, 76, 84,

86, 186, 188, 201, 227, 228
CC BIND REQ . . 13, 56, 57, 59, 60, 69, 76, 78, 84,

86, 88, 154, 155, 156, 162, 169, 176, 186, 188,
190, 200, 226, 229

CC BLOCKING CON 48, 163, 168, 170, 177,
256

CC BLOCKING IND . . 48, 165, 166, 173, 180, 255
CC BLOCKING REQ 47, 162, 254
CC BLOCKING RES. 47, 166, 255
CC CALL FAILURE IND 26, 41, 71, 93, 96,

113, 142, 220, 248
CC CALL REATTEMPT IND 18, 19, 31, 32,

37, 71, 80, 142, 210, 235
CC CONNECT IND 21, 39, 114, 115
CC CONNECT REQ 21, 38, 112
CC CONT CHECK IND . . 34, 84, 86, 87, 91, 186,

188, 189, 193, 237, 238
CC CONT CHECK REQ . . 34, 82, 184, 210, 236,

238
CC CONT REPORT IND . . 34, 37, 38, 84, 87, 91,

186, 189, 193, 237, 239
CC CONT REPORT REQ 34, 36, 38, 71, 88,

89, 190, 191, 210, 236, 238
CC CONT TEST IND . . 33, 34, 36, 83, 88, 89, 91,

185, 190, 191, 193, 238
CC CONT TEST REQ . . . 33, 34, 36, 84, 86, 186,

188, 210, 237
CC DISCONNECT IND 21, 27, 28, 113, 146,

216, 220
CC DISCONNECT REQ . . . 18, 20, 26, 27, 28, 31,

59, 99, 144, 216, 220, 249
CC ERROR ACK . . 15, 54, 58, 60, 61, 63, 65, 69,

70, 71, 77, 83, 87, 90, 93, 96, 101, 104, 107,
110, 113, 116, 119, 122, 124, 128, 131, 134,
137, 140, 145, 148, 152, 157, 160, 163, 167,
170, 174, 177, 181, 185, 189, 192, 195, 200,
213, 226, 234, 236, 237, 238, 239, 240, 247,
248, 249, 253

CC IBI IND . . . 21, 28, 39, 111, 213, 240, 243, 244,
245

CC IBI REQ . . 20, 27, 38, 109, 212, 241, 243, 244,
245

CC INFO ACK. 12, 52, 53, 200, 226
CC INFO REQ . 12, 52, 53
CC INFO TIMEOUT IND . . . 18, 31, 93, 99, 211,

241

CC INFORMATION IND 18, 31, 93, 97, 209,
211, 240

CC INFORMATION REQ 18, 31, 94, 95, 208,
211, 240

CC MAINT IND 29, 57, 183, 227

CC MORE INFO IND . . 18, 31, 94, 208, 211, 240

CC MORE INFO REQ . . 18, 31, 92, 209, 211, 240

CC OK ACK . . 14, 61, 63, 67, 77, 90, 96, 101, 104,
107, 110, 115, 116, 119, 124, 128, 131, 134,
137, 140, 145, 152, 160, 167, 174, 181, 192, 238

CC OPTMGMT REQ 14, 62, 68, 201, 229

CC PROCEEDING IND . . . 21, 39, 102, 212, 240,
243

CC PROCEEDING REQ . . . 20, 38, 100, 211, 241

CC PROGRESS IND . . 21, 39, 108, 212, 240, 243,
245

CC PROGRESS REQ 20, 38, 106, 212, 241,
243, 245

CC QUERY CON 50, 182, 260

CC QUERY IND 49, 179, 259

CC QUERY REQ 49, 176, 259

CC QUERY RES. 49, 180, 259

CC REJECT IND 26, 41, 141, 216, 219

CC REJECT REQ 26, 27, 41, 139, 211, 216,
219, 241, 248

CC RELEASE CON 27, 28, 42, 43, 148, 153,
221

CC RELEASE IND 17, 27, 28, 42, 71, 87, 96,
113, 122, 148, 149, 153, 163, 167, 170, 174,
177, 181, 189, 216, 221, 252

CC RELEASE REQ 17, 27, 30, 42, 43, 73, 84,
99, 139, 147, 151, 186, 216, 221, 249, 252

CC RELEASE RES 27, 42, 151, 221

CC RESET CON 44, 45, 157, 161, 254

CC RESET IND 25, 40, 44, 45, 158, 159, 163,
170, 177, 253

CC RESET REQ . . . 25, 40, 44, 45, 154, 155, 156,
253

CC RESET RES 44, 45, 159, 254

CC RESTART CON 29, 155, 222

CC RESTART REQ 29, 154, 221, 253

CC RESUME CON 24, 135, 215

CC RESUME IND 24, 40, 132, 214, 247

CC RESUME REJECT IND 24, 138, 215

CC RESUME REJECT REQ . . . 24, 136, 215, 248

CC RESUME REQ 24, 25, 40, 130, 214, 247

CC RESUME RES 24, 133, 215, 247

CC SETUP COMPLETE IND . . 21, 39, 113, 117,
210, 236

CC SETUP COMPLETE REQ 21, 39, 114,
115, 210, 236

322 Version 0.9a Ed. 3

Call Control Interface (CCI) Indices

CC SETUP CON . . . 18, 31, 38, 70, 71, 78, 80, 81,
114, 127, 130, 133, 136, 147, 149, 151, 153,
209, 230, 234, 276, 278

CC SETUP IND 17, 18, 26, 31, 33, 34, 36, 38,
41, 59, 73, 74, 76, 84, 86, 87, 92, 97, 99, 112,
127, 130, 133, 136, 139, 144, 147, 149, 151,
153, 186, 188, 189, 202, 208, 232, 233, 234,
238, 271

CC SETUP REQ . . . 17, 18, 30, 31, 33, 34, 36, 38,
62, 68, 69, 70, 78, 79, 80, 89, 91, 94, 95, 141,
147, 149, 151, 153, 191, 192, 193, 202, 206,
209, 229, 232, 233, 234, 235, 236, 240, 241, 271

CC SETUP RES . . . 17, 18, 31, 38, 57, 59, 73, 76,
209, 211, 227, 233, 241, 276, 278

CC SUSPEND CON 22, 122, 126, 214
CC SUSPEND IND 22, 40, 123, 213, 246
CC SUSPEND REJECT IND . . 23, 122, 129, 214
CC SUSPEND REJECT REQ . . 22, 127, 214, 247
CC SUSPEND REQ 22, 25, 40, 121, 213, 245
CC SUSPEND RES 22, 124, 213, 246, 247
CC UNBIND REQ . 14, 61
CC UNBLOCKING CON 49, 175, 258
CC UNBLOCKING IND 49, 172, 257
CC UNBLOCKING REQ 48, 169, 256
CC UNBLOCKING RES 48, 173, 257

2006-01-02 323

Indices

Protocol State Index

CCS CONNECTED 114, 115, 117, 118, 120,
121, 123, 127, 129, 130, 132, 133, 135

CCS IDLE . . . 29, 60, 61, 62, 63, 70, 74, 80, 82, 85,
89, 91, 140, 141, 142, 143, 148, 150, 151, 153,
157, 158, 161, 163, 170, 177, 180, 182, 184,
187, 191, 193

CCS SUSPENDED . . 121, 123, 124, 126, 127, 129,
130, 132, 133, 135, 136, 138, 247

CCS UNBND . 57
CCS WACK AREQ . 54
CCS WACK BREQ . 57, 60
CCS WCON RELREQ 148, 150, 153
CCS WCON SREQ 70, 78, 80, 91, 141, 142,

193, 240, 241, 243, 245
CCS WIND ALERTING 102, 105, 111, 146
CCS WIND CCREP 74, 91, 193
CCS WIND CONNECT 111, 146
CCS WIND INFO . 92, 97, 99

CCS WIND MORE . . 70, 80, 94, 96, 111, 142, 146

CCS WIND PROCEED 80, 96, 100, 102, 105,
111, 142, 146

CCS WIND PROGRESS 105, 108, 111, 146

CCS WREQ ALERTING 103, 109, 112, 144

CCS WREQ CCREP 70, 78, 80, 89, 191

CCS WREQ CONNECT 109, 112, 144

CCS WREQ INFO 80, 94, 96, 99, 142, 146

CCS WREQ MORE . . . 74, 79, 90, 92, 97, 98, 100,
102, 103, 105, 109, 112, 144, 192

CCS WREQ PROCEED 76, 79, 90, 98, 103,
109, 112, 144, 192

CCS WREQ PROGRESS 103, 106, 109, 112,
144

CCS WRES RELIND 148, 150, 151

CCS WRES SIND 74, 76, 139, 240, 243, 244,
248

324 Version 0.9a Ed. 3

	Preface
	Security Warning
	Abstract
	Purpose
	Intent
	Audience
	Disclaimer
	Revision History

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, Abbreviations

	The Call Control Layer
	Model of the CCI
	CCI Services
	UNI
	Address Formats

	NNI
	Address Formats

	Local Management

	CCI Services Definition
	Local Management Services Definition
	Call Control Information Reporting Service
	CCS Address Service
	CCS User Bind Service
	CCS User Unbind Service
	Receipt Acknowledgement Service
	Options Management Service
	Error Acknowledgement Service

	User-Network Interface Services Definition
	Call Setup Phase
	User Primitives for Successful Call Setup
	Provider Primitives for Successful Call Setup

	Call Establishment Phase
	User Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Setup

	Call Established Phase
	Suspend Service
	Resume Service

	Call Termination Phase
	Call Reject Service
	Call Failure Service
	Call Release Service

	Call Management
	User Primitives for Call Management
	Provider Primitives for Call Management

	Network-Network Interface Services Definition
	Call Setup Phase
	User Primitives for Successful Call Setup
	Provider Primitives for Successful Call Setup

	Continuity Test Phase
	Continuity Test Successful
	Continuity Test Unsuccessful

	Call Establishment Phase
	User Primitives for Successful Call Establishment
	Provider Primitives for Successful Call Establishment

	Call Established Phase
	User Primitives for Established Calls
	Provider Primitives for Established Calls

	Call Termination Phase
	Call Reject Service
	Call Failure Service
	Call Release Service

	Circuit Management Services
	Reset Service
	Blocking Service
	Unblocking Service
	Query Service

	CCI Primitives
	Management Primitives
	Call Control Information Request
	Call Control Information Acknowledgement
	Protocol Address Request
	Protocol Address Acknowledgement
	Bind Protocol Address Request
	Bind Protocol Address Acknowledgement
	Unbind Protocol Address Request
	Call Processing Options Management Request
	Call Processing Options Management Acknowledgement
	Error Acknowledgement
	Successful Receipt Acknowledgements

	Primitive Format and Rules
	Call Setup Phase
	Call Control Setup Request
	Call Control Setup Indication
	Call Control Setup Response
	Call Control Setup Confirm
	Call Control Reattempt Indication

	Continuity Check Phase
	Call Control Continuity Check Request
	Call Control Continuity Check Indication
	Call Control Continuity Test Request
	Call Control Continuity Test Indication
	Call Control Continuity Report Request
	Call Control Continuity Report Indication

	Collecting Information Phase
	Call Control More Information Request
	Call Control More Information Indication
	Call Control Information Request
	Call Control Information Indication
	Call Control Information Timeout Indication

	Call Establishment Phase
	Call Control Proceeding Request
	Call Control Proceeding Indication
	Call Control Alerting Request
	Call Control Alerting Indication
	Call Control Progress Request
	Call Control Progress Indication
	Call Control In-Band Information Request
	Call Control In-Band Information Indication
	Call Control Connect Request
	Call Control Connect Indication
	Call Control Setup Complete Request
	Call Control Setup Complete Indication

	Call Established Phase
	Forward Transfer Request
	Forward Transfer Indication
	Call Control Suspend Request
	Call Control Suspend Indication
	Call Control Suspend Response
	Call Control Suspend Confirmation
	Call Control Suspend Reject Request
	Call Control Suspend Reject Confirmation
	Call Control Resume Request
	Call Control Resume Indication
	Call Control Resume Response
	Call Control Resume Confirmation
	Call Control Resume Reject Request
	Call Control Resume Reject Indication

	Call Termination Phase
	Call Control Reject Request
	Call Control Reject Indication
	Call Control Call Failure Indication
	Call Control Disconnect Request
	Call Control Disconnect Indication
	Call Control Release Request
	Call Control Release Indication
	Call Control Release Response
	Call Control Release Confirmation

	Management Primitive Formats and Rules
	Interface Management Primitives
	Interface Management Restart Request
	Interface Management Restart Confirmation

	Circuit Management Primitives
	Circuit Management Reset Request
	Circuit Management Reset Indication
	Circuit Management Reset Response
	Circuit Management Reset Confirmation
	Circuit Management Blocking Request
	Circuit Management Blocking Indication
	Circuit Management Blocking Response
	Circuit Management Blocking Confirmation
	Circuit Management Unblocking Request
	Circuit Management Unblocking Indication
	Circuit Management Unblocking Response
	Circuit Management Unblocking Confirmation
	Circuit Management Query Request
	Circuit Management Query Indication
	Circuit Management Query Response
	Circuit Management Query Confirmation

	Maintenance Primitives
	Maintenance Indication

	Circuit Continuity Test Primitives
	Circuit Continuity Check Request
	Circuit Continuity Check Indication
	Circuit Continuity Test Request
	Circuit Continuity Test Indication
	Circuit Continuity Report Request
	Circuit Continuity Report Indication

	Collecting Information Phase

	Diagnostics Requirements
	Non-Fatal Error Handling Facility
	Fatal Error Handling Facility

	Addendum for Q.931 Conformance
	Primitives and Rules for Q.931 Conformance
	Common Primitive Parameters
	Call Control Addresses
	Optional Information Elements

	Local Management Primitives
	CC_INFO_ACK
	CC_BIND_REQ
	CC_BIND_ACK
	CC_OPTMGMT_REQ

	Call Setup Primitives
	Call Type and Flags
	CC_SETUP_REQ
	CC_SETUP_IND
	CC_SETUP_RES
	CC_SETUP_CON
	CC_CALL_REATTEMPT_IND
	CC_SETUP_COMPLETE_REQ
	CC_SETUP_COMPLETE_IND

	Continuity Check Primitives
	CC_CONT_CHECK_REQ
	CC_CONT_TEST_REQ
	CC_CONT_REPORT_REQ

	Call Establishment Primitives
	CC_MORE_INFO_REQ
	CC_MORE_INFO_IND
	CC_INFORMATION_REQ
	CC_INFORMATION_IND
	CC_INFO_TIMEOUT_IND
	CC_PROCEEDING_REQ
	CC_PROCEEDING_IND
	CC_ALERTING_REQ
	CC_ALERTING_IND
	CC_PROGRESS_REQ
	CC_PROGRESS_IND
	CC_IBI_REQ
	CC_IBI_IND

	Call Established Primitives
	CC_SUSPEND_REQ
	CC_SUSPEND_IND
	CC_SUSPEND_RES
	CC_SUSPEND_CON
	CC_SUSPEND_REJECT_REQ
	CC_SUSPEND_REJECT_IND
	CC_RESUME_REQ
	CC_RESUME_IND
	CC_RESUME_RES
	CC_RESUME_CON
	CC_RESUME_REJECT_REQ
	CC_RESUME_REJECT_IND

	Call Termination Primitives
	Cause Values
	CC_REJECT_REQ
	CC_REJECT_IND
	CC_CALL_FAILURE_IND
	CC_DISCONNECT_REQ
	CC_DISCONNECT_IND
	CC_RELEASE_REQ
	CC_RELEASE_IND
	CC_RELEASE_RES
	CC_RELEASE_CON

	Management Primitives
	CC_RESTART_REQ
	CC_RESTART_CON

	Q.931 Header File Listing

	Addendum for Q.764 Conformance
	Primitives and Rules for Q.764 Conformance
	Common Primitive Parameters
	Call Control Addresses
	Optional Parameters

	Local Management Primitives
	CC_INFO_ACK
	CC_BIND_REQ
	CC_BIND_ACK
	CC_OPTMGMT_REQ

	Call Setup Primitives
	CC_SETUP_REQ
	CC_SETUP_IND
	CC_SETUP_RES
	CC_SETUP_CON
	CC_CALL_REATTEMPT_IND
	CC_SETUP_COMPLETE_REQ
	CC_SETUP_COMPLETE_IND

	Continuity Check Phase
	CC_CONT_CHECK_REQ
	CC_CONT_CHECK_IND
	CC_CONT_TEST_REQ
	CC_CONT_TEST_IND
	CC_CONT_REPORT_REQ
	CC_CONT_REPORT_IND

	Call Establishment Primitives
	CC_MORE_INFO_REQ
	CC_MORE_INFO_IND
	CC_INFORMATION_REQ
	CC_INFORMATION_IND
	CC_INFO_TIMEOUT_IND
	CC_PROCEEDING_REQ
	CC_PROCEEDING_IND
	CC_ALERTING_REQ
	CC_ALERTING_IND
	CC_PROGRESS_REQ
	CC_PROGRESS_IND
	CC_IBI_REQ
	CC_IBI_IND

	Call Established Primitives
	CC_SUSPEND_REQ
	CC_SUSPEND_IND
	CC_SUSPEND_RES
	CC_SUSPEND_REJECT_REQ
	CC_RESUME_REQ
	CC_RESUME_IND
	CC_RESUME_RES
	CC_RESUME_REJECT_REQ

	Call Termination Primitives
	CC_REJECT_REQ
	CC_CALL_FAILURE_IND
	CC_DISCONNECT_REQ
	CC_RELEASE_REQ
	CC_RELEASE_IND

	Management Primitives
	CC_RESTART_REQ
	CC_RESET_REQ
	CC_RESET_IND
	CC_RESET_RES
	CC_RESET_CON
	CC_BLOCKING_REQ
	CC_BLOCKING_IND
	CC_BLOCKING_RES
	CC_BLOCKING_CON
	CC_UNBLOCKING_REQ
	CC_UNBLOCKING_IND
	CC_UNBLOCKING_RES
	CC_UNBLOCKING_CON
	CC_QUERY_REQ
	CC_QUERY_IND
	CC_QUERY_RES
	CC_QUERY_CON

	Q.764 Header File Listing

	Addendum for ETSI EN 300 356-1 V3.2.2 Conformance
	Primitives and Rules for ETSI EN 300 356-1 V3.2.2 Conformance
	Local Management Primitives
	Call Setup Primitives
	CC_SETUP_REQ
	CC_SETUP_IND

	ETSI EN 300 356-1 V3.2.2 Header File Listing

	Mapping of CCI Primitives to Q.931
	Mapping of CCI Primitives to Q.764
	State/Event Tables
	Primitive Precedence Tables
	CCI Header File Listing
	License
	GNU Free Documentation License
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	How to use this License for your documents

	Glossary
	Acronyms
	References
	Indices
	Concept Index
	Type Index
	Variable Index
	Primitive Index
	Protocol State Index

