
Transport Provider Interface Specification

UNIX International
OSI Special Interest Group
Revision: 1.5 (Date: 92/12/10)

Published by:

UNIX International
Waterview Corporate Center

20 Waterview Boulevard
Parsippany, NJ 07054

for further information, contact:
Vice President of Marketing

Phone: +1 201-263-8400
Fax: +1 201-263-8401

International Offices:

UNIX International UNIX International UNIX International UNIX International
Asian/Pacific Office Australian Office European Office Pacific Basin Office
Shinei Bldg. 1F Suite 1, Century Plaza 25, Avenue de Beaulieu Cintech II
Kameido 80 Berry Street 1160 Brussels 75 Science Park Drive
Koto-ku, Tokyo 136 North Sydney, NSW 2060 Belgium Singapore Science Park
Japan Australia Singapore 0511

Singapore

Phone:(81) 3-3636-1122 Phone:(61) 2-922-5341 Phone:(32) 2-672-3700 Phone:(65) 776-0313
Fax: (81) 3-3636-1121 Fax: (61) 2-929-0635 Fax: (32) 2-672-4415 Fax: (65) 776-0421

Copyright  1992 UNIX International, Inc.

Permission to use, copy, modify, and distribute this documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that the name UNIX

International not be used in advertising or publicity pertaining to distribution of the software without
specific, written prior permission. UNIX International makes no representations about the suitability of this
documentation for any purpose. It is provided "as is" without express or implied warranty.

UNIX INTERNATIONAL DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
DOCUMENTATION, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS, IN NO EVENT SHALL UNIX INTERNATIONAL BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH
THE USE OR PERFORMANCE OF THIS DOCUMENTATION.

NOTICE:

This document is based on the UNIX System Laboratories Transport Provider Interface (TPI) specification
which was used with permission by the UNIX International OSI Special Interest Group (UI OSISIG).
Participation in the UI OSISIG is open to UNIX International members and other interested parties. For
further information contact UNIX International at the addresses above.

UNIX International is making this documentation available as a reference point for the industry. While
UNIX International believes that these interfaces are well defined in this release of the document, minor
changes may be made prior to products conforming to the interfaces being made available from UNIX

System Laboratories or UNIX International members.

Trademarks:

UNIX is a registered trademark of UNIX System Laboratories in the United States and other countries.
X/Open is a trademark of the X/Open Company Ltd. in the UK and other countries.

Revision: 1.5 Date: 92/12/10

TPI Specification

1. Introduction

To support a framework for providing networking products in the UNIX system, an effort
is underway to define service interfaces that map to strategic levels of the Open Systems
Interconnection (OSI) Reference Model. These service interfaces hide implementation
details of a particular service from the consumer of the service. This enables system
programmers to develop software independent of the particular protocol that provides a
specific service. The interfaces being specified for UNIX System V are defined within
the STREAMS environment. This document specifies a kernel-level interface that
supports the services of the Transport Layer for connection-mode and connectionless-
mode services.

This specification applies to System V Release 4.2 ES/MP.

Revision: 1.5 Page 1 Date: 92/12/10

Revision: 1.5 Page 2 Date: 92/12/10

TPI Specification

2. Transport Provider Interface

The transport interface defines a message interface to a transport provider implemented
under STREAMS1. This version of the transport provider interface supports the XPG4
version of the X/Open Transport Interface (XTI). A user communicates to a transport
provider via a full duplex path known as a stream (see figure 1). This stream provides a
mechanism in which messages may be passed to the transport provider from the transport
user and vice versa.

transport interface
library cooperating
streams module

..

..

UNIX kernel

Stream mechanism

kernel level

provider
transport

stream
full duplex

library
interface
transport

user

user level
transport

Figure 1. Example of a stream from a user to a transport provider

The STREAMS messages that are used to communicate transport service primitives
between the transport user and the transport provider may have one of the following
formats:

1. A M_PROTO message block followed by zero or more M_DATA message blocks.
The M_PROTO message block contains the type of transport service primitive and
all the relevant arguments associated with the primitive. The M_DATA blocks
contain transport user data associated with the transport service primitive.

1. It is assumed that the reader of this document is familiar with the concept STREAMS.

Revision: 1.5 Page 3 Date: 92/12/10

Transport Provider Interface

2. One M_PCPROTO message block containing the type of transport service primitive
and all the relevant arguments associated with the primitive.

3. One or more M_DATA message blocks containing transport user data.

The following sections describe the transport primitives which define both a connection-
mode and connectionless-mode transport service.

For both types of transport service, two types of primitives exist: primitives which
originate from the transport user and primitives which originate from the transport
provider. The primitives which originate from the transport user make requests to the
transport provider or respond to an event of the transport provider. The primitives which
originate from the transport provider are either confirmations of a request or are
indications to the transport user that an event has occurred. Section 2 lists the primitive
types along with the mapping of those primitives to the STREAMS message types and the
transport primitives of the ISO IS 8072 and IS 8072/DAD transport service definitions.
The format of these primitives and the rules governing the use of them are described in
sections 2.1, 2.2, and 2.3.

Revision: 1.5 Page 4 Date: 92/12/10

TPI Specification

2.1 Common Transport Primitives

The following transport primitives are common to both the connection-mode and
connectionless-mode transport services.

2.1.1 User-Originated Primitives

The following describes the format of the transport primitives which are generated by the
transport user.

2.1.1.1 T_INFO_REQ - get transport protocol parameter sizes.

This primitive requests the transport provider to return the sizes of all relevant protocol
parameters, plus the current state of the provider2. The format of the message is one
M_PCPROTO message block. The format of the M_PCPROTO message block is as
follows:

struct T_info_req {
long PRIM_type; /* always T_INFO_REQ */

}

Where PRIM_type indicates the primitive type.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive and that the transport user wait for the
acknowledgment prior to issuing any other primitives:

- Successful

Acknowledgment of the primitive via the T_INFO_ACK described in section
2.1.2.1.

- Non-fatal errors

There are no errors associated with the issuance of this primitive.

2.1.1.2 T_BIND_REQ - bind protocol address request.

This primitive requests that the transport provider bind a protocol address to the stream,
negotiate the number of connect indications allowed to be outstanding by the transport
provider for the specified protocol address, and activate3 the stream associated with the
protocol address. The format of the message is one M_PROTO message block. The
format of the M_PROTO message block is as follows:

2. The T_INFO_REQ and T_INFO_ACK primitives have no effect on the state of the transport provider and
do not appear in the state tables.

3. A stream is viewed as active when the transport provider may receive and transmit TPDUs (transport
protocol data units) associated with the stream.

Revision: 1.5 Page 5 Date: 92/12/10

User-Originated Primitives

struct T_bind_req {
long PRIM_type; /* always T_BIND_REQ */
long ADDR_length; /* length of address */
long ADDR_offset; /* offset of address */
unsigned long CONIND_number; /* requested number of connect indications

to be queued */
}

Where PRIM_type indicates the primitive type. ADDR_length is the length4 of the
protocol address to be bound to the stream and ADDR_offset is the offset from the
beginning of the M_PROTO block where the protocol address begins. CONIND_number5

is the requested number of connect indications6 allowed to be outstanding by the
transport provider for the specified protocol address. The proper alignment of the
address in the M_PROTO message block is not guaranteed. The address in the M_PROTO
message block is however, aligned the same as it was received from the transport user.
For rules governing the requests made by this primitive see the T_BIND_ACK primitive
in section 2.1.2.2.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive, and the transport user must wait for the
acknowledgment before issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_BIND_ACK
primitive.

- Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TBADADDR This indicates that the protocol address was in an
incorrect format or the address contained illegal
information. It is not intended to indicate protocol errors.

TNOADDR This indicates that the transport provider could not
allocate an address.

4. All lengths, offsets, and sizes in all structures refer to the number of bytes.
5. This field should be ignored by those providing a connectionless transport service.
6. If the number of outstanding connect indications equals CONIND_number, the transport provider need

not discard further incoming connect indications, but may chose to queue them internally until the
number of outstanding connect indications drops below CONIND_number.

Revision: 1.5 Page 6 Date: 92/12/10

TPI Specification

TACCES This indicates that the user did not have proper
permissions for the use of the requested address.

TOUTSTATE The primitive would place the transport interface out of
state.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

TADDRBUSY This indicates that the requested address is already in use.

2.1.1.3 T_UNBIND_REQ - unbind protocol address request.

This primitive requests that the transport provider unbind the protocol address associated
with the stream and deactivate the stream. The format of the message is one M_PROTO
message block. The format of the M_PROTO message block is as follows:

struct T_unbind_req {
long PRIM_type; /* always T_UNBIND_REQ */

}

Where PRIM_type indicates the primitive type.

This primitive requires the transport provider to generate the following acknowledgments
upon receipt of the primitive and that the transport user must wait for the
acknowledgment before issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_OK_ACK primitive
described in section 2.1.2.5.

- Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TOUTSTATE The primitive would place the transport interface out of state.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

2.1.1.4 T_OPTMGMT_REQ - options management.

This primitive allows the transport user to manage the options associated with the stream.
The format of the message is one M_PROTO message block. The format of the
M_PROTO message block is as follows:

Revision: 1.5 Page 7 Date: 92/12/10

User-Originated Primitives

struct T_optmgmt_req {
long PRIM_type; /* always T_OPTMGMT_REQ */
long OPT_length; /* options length */
long OPT_offset; /* options offset */
long MGMT_flags; /* flags */

}

Where PRIM_type indicates the primitive type. OPT_length is the length of the protocol
options associated with the primitive and OPT_offset is the offset from the beginning of
the M_PROTO block where the options begin. The proper alignment of the options is not
guaranteed. The options are however, aligned the same as it was received from the
transport user. MGMT_flags are the flags which define the request made by the transport
user. The allowable flags are:

T_NEGOTIATE Negotiate and set the options with the transport provider.

T_CHECK Check the validity of the specified options.

T_CURRENT Return the options currently in effect.

T_DEFAULT Return the default options.

For the rules governing the requests made by this primitive see the T_OPTMGMT_ACK
primitive in section 2.1.2.3.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive and that the transport user wait for the
acknowledgment before issuing any other primitives:

- Successful

Acknowledgment of the primitive via the T_OPTMGMT_ACK.

- Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TACCES This indicates that the user did not have proper permissions for
the use of the requested options.

TOUTSTATE The primitive would place the transport interface out of state.

TBADOPT This indicates that the options as specified were in an incorrect
format, or they contained illegal information.

TBADFLAG This indicates that the flags as specified were incorrect or
illegal.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

Revision: 1.5 Page 8 Date: 92/12/10

TPI Specification

TNOTSUPPORT This transport provider does not support the requested flag
(T_CHECK or T_CURRENT).

2.1.1.5 T_ADDR_REQ - get protocol addresses request.

This primitive requests that the transport provider return the local protocol address that is
bound to the stream and the address of the remote transport entity if a connection has
been established. The format of the message is one M_PROTO message block. The
format of the M_PROTO message block is as follows:

struct T_addr_req {
long PRIM_type; /* always T_ADDR_REQ */

}

Where PRIM_type indicates the primitive type.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive, and the transport user must wait for the
acknowledgment before issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_ADDR_ACK
primitive.

- Non-fatal errors

There are no errors associated with the issuance of this primitive.

2.1.2 Provider-Originated Primitives

The following describes the format of the transport primitives which are generated by the
transport provider.

2.1.2.1 T_INFO_ACK - protocol information acknowledgment.

This primitive indicates to the transport user any relevant protocol-dependent parameters.
It should be initiated in response to the T_INFO_REQ primitive described above. The
format of this message is one M_PCPROTO message block. The format of the
M_PCPROTO message block is as follows:

Revision: 1.5 Page 9 Date: 92/12/10

Provider-Originated Primitives

struct T_info_ack {
long PRIM_type; /* always T_INFO_ACK */
long TSDU_size; /* max TSDU size */
long ETSDU_size; /* max ETSDU size */
long CDATA_size; /* Connect data size */
long DDATA_size; /* Discon data size */
long ADDR_size; /* TSAP size */
long OPT_size; /* options size */
long TIDU_size; /* TIDU size */
long SERV_type; /* service type */
long CURRENT_state; /* current state */
long PROVIDER_flag; /* provider flags */

}

where the fields of this message have the following meanings:

PRIM_type This indicates the primitive type.

TSDU_size A value greater than zero specifies the maximum size of a transport
service data unit (TSDU); a value of zero specifies that the transport
provider does not support the concept of TSDU, although it does
support the sending of a data stream with no logical boundaries
preserved across a connection; a value of -1 specifies that there is no
limit on the size of a TSDU; and a value of -2 specifies that the transfer
of normal data is not supported by the transport provider.

ETSDU_size A value greater than zero specifies the maximum size of an expedited
transport service data unit (ETSDU); a value of zero specifies that the
transport provider does not support the concept of ETSDU, although it
does support the sending of an expedited data stream with no logical
boundaries preserved across a connection; a value of -1 specifies that
there is no limit on the size of an ETSDU; and a value of -2 specifies
that the transfer of expedited data is not supported by the transport
provider.

CDATA_size A value greater than or equal to zero specifies the maximum amount
of data that may be associated with connection establishment
primitives; and a value of -2 specifies that the transport provider does
not allow data to be sent with connection establishment primitives.

DDATA_size A value greater than or equal to zero specifies the maximum amount
of data that may be associated with the disconnect primitives; and a
value of -2 specifies that the transport provider does not allow data to
be sent with the disconnect primitives.

ADDR_size A value greater than or equal to zero indicates the maximum size of a
transport protocol address; and a value of -2 specifies that the transport
provider does not provide user access to transport protocol addresses.

Revision: 1.5 Page 10 Date: 92/12/10

TPI Specification

OPT_size A value greater than or equal to zero indicates the maximum number
of bytes of protocol-specific options supported by the provider; a value
of -2 specifies that the transport provider does not support user-
settable options although they’re read-only; and a value of -3 specifies
that the transport provider does not support any options.

TIDU_size7 This is the size of the transport protocol interface data unit, and should
not exceed the tunable system limit, if non-zero, for the size of a
STREAMS message.

SERV_type This field specifies the service type supported by the transport
provider, and is one of the following:

T_COTS The provider service is connection oriented with no
orderly release support.

T_COTS_ORD The provider service is connection oriented with
orderly release support.

T_CLTS The provider service is a connectionless transport
service.

CURRENT_state This is the current state of the transport provider.

PROVIDER_flag This field specifies additional properties specific to the transport
provider and may alter the way the transport user communicates.
Transport providers supporting the features of XTI in XPG4 and
beyond must send up a version number as specified below. The
following flags may be set by the provider:

SENDZERO This flag indicates that the transport provider
supports the sending of zero-length TSDUs.

XPG4_1 This indicates that the transport provider conforms to
XTI in XPG4 and supports the new primitives
T_ADDR_REQ and T_ADDR_ACK.

The following rules apply when the type of service is T_CLTS:

— The ETSDU_size, CDATA_size and DDATA_size fields should be -2.

— The TSDU_size should equal the TIDU_size.

7. This is the amount of user data that may be present in a single T_DATA_REQ or T_EXDATA_REQ
primitive.

Revision: 1.5 Page 11 Date: 92/12/10

Provider-Originated Primitives

2.1.2.2 T_BIND_ACK - bind protocol address acknowledgment.

This primitive indicates to the transport user that the specified protocol address has been
bound to the stream, that the specified number of connect indications are allowed to be
queued by the transport provider for the specified protocol address, and that the stream
associated with the specified protocol address has been activated. The format of the
message is one M_PCPROTO message block. The format of the M_PCPROTO message
block is as follows:

struct T_bind_ack {
long PRIM_type; /* always T_BIND_ACK */
long ADDR_length; /* length of address - see note in sec. 1.4 */
long ADDR_offset; /* offset of address */
unsigned long CONIND_number; /* connect indications to be queued */

}

Where PRIM_type indicates the primitive type. ADDR_length is the length of the protocol
address that was bound to the stream and ADDR_offset is the offset from the beginning of
the M_PCPROTO block where the protocol address begins. CONIND_number8 is the
accepted number of connect indications allowed to be outstanding by the transport
provider for the specified protocol address. The proper alignment of the address in the
M_PCPROTO message block is not guaranteed.

The following rules apply to the binding of the specified protocol address to the stream:

— If the ADDR_length field in the T_BIND_REQ primitive is 0, then the transport
provider must assign a transport protocol address to the user.

— The transport provider is to bind the transport protocol address as specified in the
T_BIND_REQ primitive. If the requested transport protocol address is in use or if the
transport provider cannot bind the specified address, it must return an error.

The following rules apply to negotiating the CONIND_number argument:

— The returned value must be less than or equal to the corresponding requested number
as indicated in the T_BIND_REQ primitive.

— If the requested value is greater than zero, the returned value must also be greater
than zero.

— Only one stream that is bound to the indicated protocol address may have a
negotiated accepted number of maximum connect requests greater than zero. If a
T_BIND_REQ primitive specifies a value greater than zero, but another stream has
already bound itself to the given protocol address with a value greater than zero, the
transport provider must return an error.

8. This field doesn’t apply to connectionless transport providers.

Revision: 1.5 Page 12 Date: 92/12/10

TPI Specification

— If a stream with CONIND_number greater than zero is used to accept a connection,
the stream will be found busy during the duration of that connection and no other
streams may be bound to that protocol address with a CONIND_number greater than
zero. This will prevent more than one stream bound to the identical protocol address
from accepting connect indications.

— A stream requesting a CONIND_number of zero should always be legal. This
indicates to the transport provider that the stream is to be used to request connections
only.

— A stream with a negotiated CONIND_number greater than zero may generate connect
requests or accept connect indications.

If the above rules result in an error condition, then the transport provider must issue an
T_ERROR_ACK primitive to the transport user specifying the error as defined in the
description of the T_BIND_REQ primitive.

2.1.2.3 T_OPTMGMT_ACK - option management acknowledgment.

This indicates to the transport user that the options management request has completed.
The format of the message is one M_PCPROTO message block. The format of the
M_PCPROTO message block is as follows:

struct T_optmgmt_ack {
long PRIM_type; /* always T_OPTMGMT_ACK */
long OPT_length; /* options length - see note in sec. 1.4 */
long OPT_offset; /* options offset */
long MGMT_flags; /* flags */

}

Where PRIM_type indicates the primitive type. OPT_length is the length of the protocol
options associated with the primitive and OPT_offset is the offset from the beginning of
the M_PCPROTO block where the options begin. The proper alignment of the options is
not guaranteed. MGMT_flags should be the same as those specified in the
T_OPTMGMT_REQ primitive with any additional flags as specified below.

The following rules apply to the T_OPTMGMT_ACK primitive.

— If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_DEFAULT, the
provider should return the default provider options without changing the existing
options associated with the stream.

— If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_CHECK, the
provider should return the options as specified in the T_OPTMGMT_REQ primitive
along with the additional flags T_SUCCESS or T_FAILURE which indicate to the user
whether the specified options are supportable by the provider. The provider should
not change any existing options associated with the stream.

— If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_NEGOTIATE,
the provider should set and negotiate the option as specified by the following rules:

Revision: 1.5 Page 13 Date: 92/12/10

Provider-Originated Primitives

— If the OPT_length field of the T_OPTMGMT_REQ primitive is 0, then the transport
provider is to set and return the default options associated with the stream in the
T_OPTMGMT_ACK primitive.

— If options are specified in the T_OPTMGMT_REQ primitive, then the transport
provider should negotiate those options, set the negotiated options and return the
negotiated options in the T_OPTMGMT_ACK primitive. It is the user’s
responsibility to check the negotiated options returned in the T_OPTMGMT_ACK
primitive and take appropriate action.

— If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is T_CURRENT, the
provider should return the current options that are currently associated with the
stream.

— If the value of MGMT_flags in the T_OPTMGMT_REQ primitive is either
T_NEGOTIATE or T_CHECK and the transport provider cannot support the requested
flag, an error is to be returned.

If the above rules result in an error condition, the transport provider must issue a
T_ERROR_ACK primitive to the transport user specifying the error as defined in the
description of the T_OPTMGMT_REQ primitive.

2.1.2.4 T_ERROR_ACK - error acknowledgment.

This primitive indicates to the transport user that a non-fatal9 error has occurred in the
last transport-user-originated primitive. This may only be initiated as an
acknowledgment for those primitives that require one. It also indicates to the user that no
action was taken on the primitive that caused the error. The format of the message is one
M_PCPROTO message block. The format of the M_PCPROTO message block is as
follows:

struct T_error_ack {
long PRIM_type; /* always T_ERROR_ACK */
long ERROR_prim; /* primitive in error */
long TLI_error; /* TLI error code - see note in sec. 1.4 */
long UNIX_error; /* UNIX error code - see note in sec. 1.4 */

}

Where PRIM_type identifies the primitive. ERROR_prim identifies the primitive type that
caused the error and TLI_error contains the Transport Level Interface error code.
UNIX_error contains the UNIX System error code. This may only be non zero if
TLI_error is equal to TSYSERR. The following Transport Level Interface error codes are
allowed to be returned:

9. For a overview of the error handling capabilities available to the transport provider see section 2.4.

Revision: 1.5 Page 14 Date: 92/12/10

TPI Specification

TBADADDR This indicates that the protocol address as specified in the primitive
was in an incorrect format or the address contained illegal
information.

TBADOPT This indicates that the options as specified in the primitive were in an
incorrect format, or they contained illegal information.

TBADF This indicates that the stream queue pointer as specified in the
primitive was illegal.

TNOADDR This indicates that the transport provider could not allocate an address.

TACCES This indicates that the user did not have proper permissions.

TOUTSTATE The primitive would place the interface out of state.

TBADSEQ The sequence number specified in the primitive was incorrect or
illegal.

TBADFLAG The flags specified in the primitive were incorrect or illegal.

TBADDATA The amount of user data specified was illegal.

TSYSERR A system error has occurred and the UNIX System error is indicated in
the primitive.

TADDRBUSY The requested address is in use.

TRESADDR The transport provider requires that the responding stream is bound to
the same address as the stream on which the connection indication was
received.

TNOTSUPPORT The transport provider does not support the requested capability.

2.1.2.5 T_OK_ACK - success acknowledgment.

This primitive indicates to the transport user that the previous transport-user-originated
primitive was received successfully by the transport provider. It does not indicate to the
transport user any transport protocol action taken due to the issuance of the last primitive.
This may only be initiated as an acknowledgment for those primitives that require one.
The format of the message is one M_PCPROTO message block. The format of the
M_PCPROTO message block is as follows:

struct T_ok_ack {
long PRIM_type; /* always T_OK_ACK */
long CORRECT_prim;/* primitive */

}

Where PRIM_type identifies the primitive. CORRECT_prim contains the successfully
received primitive type.

Revision: 1.5 Page 15 Date: 92/12/10

Provider-Originated Primitives

2.1.2.6 T_ADDR_ACK - get protocol addresses acknowledgment.

This primitive indicates to the transport user the addresses of the local and remote
transport entities. The local address is the protocol address that has been bound to the
stream. If a connection has been established, the remote address is the protocol address
of the remote transport entity. The format of the message is one M_PCPROTO message
block. The format of the M_PCPROTO message block is as follows:

struct T_addr_ack {
long PRIM_type; /* always T_ADDR_ACK */
long LOCADDR_length; /* length of local address - see note in sec. 1.4 */
long LOCADDR_offset; /* offset of local address */
long REMADDR_length; /* length of remote address - see note in sec. 1.4 */
long REMADDR_offset; /* offset of remote address */

}

Where PRIM_type indicates the primitive type. LOCADDR_length is the length of the
protocol address that was bound to the stream and LOCADDR_offset is the offset from the
beginning of the M_PCPROTO block where the protocol address begins. If the stream is
in the data transfer state, REMADDR_length is the length of the protocol address of the
remote transport entity and REMADDR_offset is the offset from the beginning of the
M_PCPROTO block where the protocol address begins.

The following rules apply:

— If the interface is in any state but T_DATAXFER, the values returned for
REMADDR_length and REMADDR_offset must be 0.

— If the interface is in the T_UNINIT or T_UNBND state, the values returned for
LOCADDR_length and LOCADDR_offset must be 0.

Revision: 1.5 Page 16 Date: 92/12/10

TPI Specification

2.2 Connection-Mode Transport Primitives

The following transport primitives pertain only to the connection-mode transport service.

2.2.1 User-Originated Primitives

The following describes the format of the transport primitives which are generated by the
transport user.

2.2.1.1 T_CONN_REQ - connect request.

This primitive requests that the transport provider make a connection to the specified
destination. The format of this message is one M_PROTO message block followed by
zero or more M_DATA blocks if any user data is specified by the transport user. The
format of the M_PROTO message block is as follows:

struct T_conn_req {
long PRIM_type; /* always T_CONN_REQ */
long DEST_length; /* dest addr length */
long DEST_offset; /* dest addr offset */
long OPT_length; /* options length */
long OPT_offset; /* options offset */

}

Where PRIM_type identifies the primitive type. DEST_length is the length of the
destination address and DEST_offset is the offset from the beginning of the M_PROTO
message block where the destination address begins. Similarly, OPT_length and
OPT_offset describe the location of the requested options associated with the primitive.
The proper alignment of the destination address and options in the M_PROTO message
block is not guaranteed10. The destination address and options in the M_PROTO message
block are however, aligned the same as they were received from the transport user.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive, and the transport user must wait for the
acknowledgment before issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_OK_ACK
primitive described in section 2.1.2.5.

- Non-fatal errors

10. The information located by the defined structures may not be in the proper alignment in the message
blocks, so the casting of structure definitions over these fields may produce incorrect results. It is
advised that the transport providers supply exact format specifications for the appropriate information
to the transport users.

Revision: 1.5 Page 17 Date: 92/12/10

User-Originated Primitives

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TACCES This indicates that the user did not have proper
permissions for the use of the requested address or
options.

TBADADDR This indicates that the protocol address was in an
incorrect format or the address contained illegal
information. It is not intended to indicate protocol
connection errors, such as an unreachable destination.
Those error types are indicated via the T_DISCON_IND
primitive.

TBADOPT This indicates that the options were in an incorrect format,
or they contained illegal information.

TOUTSTATE The primitive would place the transport interface out of
state.

TBADDATA The amount of user data specified was illegal.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

TADDRBUSY This transport provider does not support multiple
connections with the same local and remote addresses.

2.2.1.2 T_CONN_RES - connection response.

This primitive requests that the transport provider accept a previous connect request on
the specified response queue. The format of this message is one M_PROTO message
block followed by zero or more M_DATA blocks if any user data is specified by the
transport user. The format of the M_PROTO message block is as follows:

struct T_conn_res {
long PRIM_type; /* always T_CONN_RES */
queue_t *QUEUE_ptr;/* response queue ptr */
long OPT_length; /* options length */
long OPT_offset; /* options offset */
long SEQ_number; /* sequence number */

}

Where PRIM_type identifies the primitive type. QUEUE_ptr identifies the transport
provider queue pair (i.e. read queue pointer) which should be used to accept the connect
request. This queue pointer should map onto a stream which is already bound to a
protocol address but if the stream is not bound, the transport provider must bind it to the
same protocol address that was bound to the stream on which the connection indication
arrived. OPT_length is the length of the responding options and OPT_offset is the offset
from the beginning of the M_PROTO message block where the responding options begin.

Revision: 1.5 Page 18 Date: 92/12/10

TPI Specification

SEQ_number is the sequence number which identifies the connection to be responded to.
The proper alignment of the options in the M_PROTO message block is not guaranteed.
The options in the M_PROTO message block are, however, aligned the same as they were
received from the transport user.

This primitive requires the transport provider to generate one of the following
acknowledgments upon receipt of the primitive, and the transport user wait for the
acknowledgment before issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_OK_ACK
primitive described in section 2.1.2.5.

- Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TBADF This indicates that the response queue pointer was illegal.

TBADOPT This indicates that the options were in an incorrect format,
or they contained illegal information.

TACCES This indicates that the user did not have proper
permissions for the use of the options or response id.

TOUTSTATE The primitive would place the transport interface out of
state.

TBADDATA The amount of user data specified was illegal.

TBADSEQ The sequence number specified in the primitive was
incorrect or illegal.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

TRESADDR The transport provider requires that the responding stream
is bound to the same address as the stream on which the
connection indication was received.

TBADADDR This indicates that the protocol address was in an
incorrect format or the address contained illegal
information.

2.2.1.3 T_DISCON_REQ - disconnect request.

This primitive requests that the transport provider deny a request for connection, or
disconnect an existing connection. The format of this message is one M_PROTO message
block possibly followed by one or more M_DATA message blocks if there is any user data
specified by the transport user. The format of the M_PROTO message block is as follows:

Revision: 1.5 Page 19 Date: 92/12/10

User-Originated Primitives

struct T_discon_req {
long PRIM_type; /* always T_DISCON_REQ */
long SEQ_number; /* sequence number */

}

Where PRIM_type identifies the primitive type. SEQ_number identifies the outstanding
connect indication that is to by denied. If the disconnect request is disconnecting an
already existing connection, then the value of SEQ_number will be ignored.

This primitive requires the transport provider to generate the following acknowledgment
upon receipt of the primitive, and the transport user must wait for the acknowledgment
prior to issuing any other primitives:

- Successful

Correct acknowledgment of the primitive is indicated via the T_OK_ACK
primitive described in section 2.1.2.5.

- Non-fatal errors

These errors will be indicated via the T_ERROR_ACK primitive described in
section 2.1.2.4. The allowable errors are as follows:

TOUTSTATE The primitive would place the transport interface out of
state.

TBADDATA The amount of user data specified was illegal.

TBADSEQ The sequence number specified in the primitive was
incorrect or illegal.

TSYSERR A system error has occurred and the UNIX System error is
indicated in the primitive.

2.2.1.4 T_DATA_REQ - data request.

This primitive indicates to the transport provider that this message contains a transport
interface data unit. One or more transport interface data units form a transport service
data unit (TSDU)11. This primitive has a mechanism which indicates the beginning and
end of a transport service data unit. However, not all transport providers support the
concept of a transport service data unit, as noted in section 2.1.2.1. The format of the
message is one M_PROTO message block followed by zero or more M_DATA message
blocks where each M_DATA message block contains zero or more bytes of data. The
format of the M_PROTO message block is as follows:

11. The maximum transport service data unit size allowed by the transport provider is indicated to the
transport user via the T_INFO_ACK primitive.

Revision: 1.5 Page 20 Date: 92/12/10

TPI Specification

struct T_data_req {
long PRIM_type; /* always T_DATA_REQ */
long MORE_flag; /* indicates more data in TSDU */

}

Where PRIM_type identifies the primitive type. MORE_flag when greater than zero,
indicates that the next T_DATA_REQ primitive is also part of this transport service data
unit.

The transport provider must also recognize a message of one or more M_DATA message
blocks without the leading M_PROTO message block as a T_DATA_REQ primitive. This
message type will be initiated from the WRITE(BA_OS) operating system service routine.
In this case there are no implied transport service data unit boundaries, and the transport
provider may view this message type as a self contained transport service data unit. If
these two types of messages are intermixed, then transport service data boundaries may
be lost.

This primitive does not require any acknowledgments, although it may generate a fatal
error. This is indicated via a M_ERROR message type which results in the failure of all
operating system service routines on the stream. The allowable errors are as follows:

EPROTO This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state. If
the interface is in the T_IDLE state when the provider receives the
T_DATA_REQ primitive, then the transport provider should just drop the
message without generating a fatal error.

— The amount of transport user data associated with the primitive defines a
transport service data unit larger than that allowed by the transport
provider.

2.2.1.5 T_EXDATA_REQ - expedited data request.

This primitive indicates to the transport provider that this message contains an expedited
transport interface data unit. One or more expedited transport interface data units form
an expedited transport service data unit12. This primitive has a mechanism which
indicates the beginning and end of an expedited transport service data unit. However,
not all transport providers support the concept of an expedited transport service data unit,
as noted in section 2.1.2.1. The format of the message is one M_PROTO message block
followed by one or more M_DATA message blocks containing at least one byte of data.
The format of the M_PROTO message block is as follows:

12. The maximum size of a expedited transport service data unit is indicated to the transport user via the
T_INFO_ACK primitive.

Revision: 1.5 Page 21 Date: 92/12/10

User-Originated Primitives

struct T_exdata_req {
long PRIM_type; /* always T_EXDATA_REQ */
long MORE_flag; /* indicates more data in ETSDU */

}

Where PRIM_type identifies the primitive type. MORE_flag when greater than zero
indicates that the next T_EXDATA_REQ primitive is also part of this expedited transport
service data unit.

This primitive does not require any acknowledgments, although it may generate a fatal
error. This is indicated via a M_ERROR message type which results in the failure of all
operating system service routines on the stream. The allowable errors are as follows:

EPROTO This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state. If
the interface is in the T_IDLE state when the provider receives the
T_EXDATA_REQ primitive, then the transport provider should just drop
the message without generating a fatal error.

— The amount of transport user data associated with the primitive defines
an expedited transport service data unit larger than that allowed by the
transport provider.

2.2.1.6 T_ORDREL_REQ - orderly release request.

This primitive indicates to the transport provider that the user is finished sending data.
This primitive is only supported by the transport provider if it is of type T_COTS_ORD.
The format of the message is one M_PROTO message block. The format of the
M_PROTO message block is as follows:

struct T_ordrel_req {
long PRIM_type; /* always T_ORDREL_REQ */

}

Where PRIM_type identifies the primitive type.

This primitive does not require any acknowledgments, although it may generate a fatal
error. This is indicated via a M_ERROR message type which results in the failure of all
operating system service routines on the stream. The allowable errors are as follows:

EPROTO This indicates one of the following unrecoverable protocol conditions:

— The primitive would place the interface in an incorrect state.

2.2.2 Provider-Originated Primitives

The following describes the format of the transport primitives which are generated by the
transport provider.

Revision: 1.5 Page 22 Date: 92/12/10

TPI Specification

2.2.2.1 T_CONN_IND - connect indication.

This primitive indicates to the transport user that a connect request to the user has been
made by the user at the specified source address. The format of this message is one
M_PROTO message block followed by zero or more M_DATA blocks if any user data is
associated with the primitive. The format of the M_PROTO message block is as follows:

struct T_conn_ind {
long PRIM_type; /* always T_CONN_IND */
long SRC_length; /* source addr length - see note in sec. 1.4*/
long SRC_offset; /* source addr offset */
long OPT_length; /* options length - see note in sec. 1.4 */
long OPT_offset; /* options offset */
long SEQ_number; /* sequence number - see note in sec. 1.4 */

}

Where PRIM_type identifies the primitive type. SRC_length is the length of the source
address and SRC_offset is the offset from the beginning of the M_PROTO message block
where the source address begins. Similarly, OPT_length and OPT_offset describe the
location of the requested options associated with the primitive. SEQ_number should be
an unique number other than -1 to identify the connect indication. The proper alignment
of the source address and options in the M_PROTO message block is not guaranteed.

2.2.2.2 T_CONN_CON - connection confirm.

This primitive indicates to the user that a connect request has been confirmed on the
specified responding address. The format of this message is one M_PROTO message
block followed by zero or more M_DATA blocks if any user data is associated with the
primitive. The format of the M_PROTO message block is as follows:

struct T_conn_con {
long PRIM_type; /* always T_CONN_CON */
long RES_length; /* responding addr length - see note in sec. 1.4*/
long RES_offest; /* responding addr offset */
long OPT_length; /* options length - see note in sec. 1.4 */
long OPT_offset; /* options offset */

}

Where PRIM_type identifies the primitive type. RES_length is the length of the
responding address that the connection was accepted on and RES_offset is the offset from
the beginning of the M_PROTO message block where the responding address begins.
Similarly, OPT_length and OPT_offset describe the size and location of the confirmed
options associated with the primitive. The proper alignment of the responding address
and options in the M_PROTO message block is not guaranteed.

2.2.2.3 T_DISCON_IND - disconnect indication.

This primitive indicates to the user that either a request for connection has been denied or
an existing connection has been disconnected. The format of this message is one

Revision: 1.5 Page 23 Date: 92/12/10

Provider-Originated Primitives

M_PROTO message block possibly followed by one or more M_DATA message blocks if
there is any user data associated with the primitive. The format of the M_PROTO
message block is as follows:

struct T_discon_ind {
long PRIM_type; /* always T_DISCON_IND */
long DISCON_reason; /* disconnect reason - see note in sec. 1.4 */
long SEQ_number; /* sequence number - see note in sec. 1.4 */

}

Where PRIM_type identifies the primitive type and DISCON_reason is the reason for
disconnect. The reason codes are protocol specific. SEQ_number is the sequence
number which identifies which connect indication was denied, or it is -1 if the provider is
disconnecting an existing connection. The SEQ_number is only meaningful when this
primitive is sent to a passive user who has the corresponding connect indication
outstanding. It allows the transport user to identify which of its outstanding connect
indications is associated with the disconnect.

2.2.2.4 T_DATA_IND - data indication.

This primitive indicates to the transport user that this message contains a transport
interface data unit. One or more transport interface data units form a transport service
data unit. This primitive has a mechanism which indicates the beginning and end of a
transport service data unit. However, not all transport providers support the concept of a
transport service data unit, as noted in section 2.1.2.1. The format of the message is one
M_PROTO message block followed by zero or more M_DATA message blocks where
each M_DATA message block, except for the last, must contain at least one byte of data.
The format of the M_PROTO message block is as follows:

struct T_data_ind {
long PRIM_type; /* always T_DATA_IND */
long MORE_flag; /* indicates more data in TSDU */

}

Where PRIM_type identifies the primitive type. MORE_flag, when greater than zero,
indicates that the next T_DATA_IND primitive is also part of this transport service data
unit.

If a TSDU spans multiple T_DATA_IND message blocks, then an ETSDU may be placed
in between two T_DATA_IND message blocks. Once an ESTDU is started, then the
ETSDU must be completed before any T_DATA_IND message blocks defining a TSDU
is resumed.

2.2.2.5 T_EXDATA_IND - expedited data indication.

This primitive indicates to the transport user that this message contains an expedited
transport interface data unit. One or more expedited transport interface data units form
an expedited transport service data unit. This primitive has a mechanism which indicates
the beginning and end of an expedited transport service data unit. However, not all

Revision: 1.5 Page 24 Date: 92/12/10

TPI Specification

transport providers support the concept of an expedited transport service data unit, as
noted in section 2.1.2.1. The format of the message is one M_PROTO message block
followed by one or more M_DATA message blocks containing at least one byte of data.
The format of the M_PROTO message block is as follows:

struct T_exdata_ind {
long PRIM_type; /* always T_EXDATA_IND */
long MORE_flag; /* indicates more data in ETSDU */

}

Where PRIM_type identifies the primitive type. MORE_flag, when greater than zero,
indicates that the next T_EXDATA_IND primitive is also part of this expedited transport
service data unit.

2.2.2.6 T_ORDREL_IND - orderly release indication.

This primitive indicates to the transport user that the user on the other side of the
connection is finished sending data. This primitive is only supported by the transport
provider if it is of type T_COTS_ORD. The format of the message is one M_PROTO
message block. The format of the M_PROTO message block is as follows:

struct T_ordrel_ind {
long PRIM_type; /* always T_ORDREL_IND */

}

Where PRIM_type identifies the primitive type.

Revision: 1.5 Page 25 Date: 92/12/10

Connectionless-Mode Transport Primitives

2.3 Connectionless-Mode Transport Primitives

The following transport primitives pertain only to the connectionless-mode transport
service.

2.3.1 User-Originated Primitives

2.3.1.1 T_UNITDATA_REQ - unitdata request.

This primitive requests that the transport provider send the specified datagram to the
specified destination. The format of the message is one M_PROTO message block
followed by zero or more M_DATA message blocks where each M_DATA message block
contains zero or more bytes of data. The format of the M_PROTO message block is as
follows:

struct T_unitdata_req {
long PRIM_type; /* always T_UNITDATA_REQ */
long DEST_length; /* dest addr length */
long DEST_offset; /* dest addr offset */
long OPT_length; /* options length */
long OPT_offset; /* options offset */

}

Where PRIM_type identifies the primitive type. DEST_length is the length of the
destination address and DEST_offset is the offset from the beginning of the M_PROTO
message block where the destination address begins. Similarly, OPT_length and
OPT_offset describe the location of the requested options associated with the primitive.
The proper alignment of the destination address and options in the M_PROTO message
block is not guaranteed. The destination address and options in the M_PROTO message
block are, however, aligned the same as they were received from the transport user.

This primitive does not require any acknowledgment. If an non-fatal error occurs, it is
the responsibility of the transport provider to report it via the T_UDERROR_IND
indication. Fatal errors are indicated via a M_ERROR message type which results in the
failure of all operating system service routines on the stream. The allowable fatal errors
are as follows:

EPROTO This indicates one of the following unrecoverable protocol conditions:

— The transport service interface was found to be in an incorrect state.

— The amount of transport user data associated with the primitive defines
an transport service data unit larger than that allowed by the transport
provider.

2.3.2 Provider-Originated Primitives

2.3.2.1 T_UNITDATA_IND - unitdata indication.

This primitive indicates to the transport user that a datagram has been received from the
specified source address. The format of the message is one M_PROTO message block

Revision: 1.5 Page 26 Date: 92/12/10

TPI Specification

followed by zero or more M_DATA message blocks where each M_DATA message block
contains at least one byte of data. The format of the M_PROTO message block is as
follows:

struct T_unitdata_ind {
long PRIM_type; /* always T_UNITDATA_IND */
long SRC_length; /* source addr length - see note in sec. 1.4 */
long SRC_offset; /* source addr offset */
long OPT_length; /* options length - see note in sec. 1.4 */
long OPT_offset; /* options offset */

}

Where PRIM_type identifies the primitive type. SRC_length is the length of the source
address and SRC_offset is the offset from the beginning of the M_PROTO message block
where the source address begins. Similarly, OPT_length and OPT_offset describe the
location of the requested options associated with the primitive. The proper alignment of
the source address and options in the M_PROTO message block is not guaranteed.

2.3.2.2 T_UDERROR_IND - unitdata error indication.

This primitive indicates to the transport user that a datagram with the specified
destination address and options produced an error. The format of this message is one
M_PROTO message block. The format of the M_PROTO message block is as follows:

struct T_uderror_ind {
long PRIM_type; /* always T_UDERROR_IND */
long DEST_length; /* destination addr length - see note in sec. 1.4 */
long DEST_offset; /* destination addr offset */
long OPT_length; /* options length - see note in sec. 1.4 */
long OPT_offset; /* options offset */
long ERROR_type; /* error type */

}

Where PRIM_type identifies the primitive type. DEST_length is the length of the
destination address and DEST_offset is the offset from the beginning of the M_PROTO
message block where the destination address begins. Similarly, OPT_length and
OPT_offset describe the location of the requested options associated with the primitive.
ERROR_type defines the protocol dependent error code. The proper alignment of the
destination address and options in the M_PROTO message block is not guaranteed.

Revision: 1.5 Page 27 Date: 92/12/10

Note about Structure Elements

2.4 Note about Structure Elements

Although the structure elements in the Transport Provider Interface are declared as long
data types, the value the transport provider assigns to those elements that refer to this
note must not be greater than the maximum value of an int data type because the
corresponding user level structure element is declared as an int.

Revision: 1.5 Page 28 Date: 92/12/10

TPI Specification

2.5 Overview of Error Handling Capabilities

There are two error handling facilities available to the transport user: one to handle non-
fatal errors and one to handle fatal errors.

2.5.1 Non-fatal Errors

The non-fatal errors are those that a transport user can correct, and are reported in the
form of an error acknowledgment to the appropriate primitive in error. Only those
primitives which require acknowledgments may generate a non-fatal error
acknowledgment. These acknowledgments always report a syntactical error in the
specified primitive when the transport provider receives the primitive. The primitive
descriptions above define those primitives and rules regarding the acknowledgment of
them. These errors are reported to the transport user via the T_ERROR_ACK primitive,
and give the transport user the option of reissuing the transport service primitive that
caused the error. The T_ERROR_ACK primitive also indicates to the transport user that
no action was taken by the transport provider upon receipt of the primitive which caused
the error.

These errors do not change the state of the transport service interface as seen by the
transport user. The state of the interface after the issuance of a T_ERROR_ACK primitive
should be the same as it was before the transport provider received the interface
primitive that was in error.

The allowable errors that can be reported on the receipt of a transport initiated primitive
are presented in the description of the appropriate primitives.

2.5.2 Fatal Errors

Fatal errors are those which can not be corrected by the transport user, or those errors
which result in an uncorrectable error in the interface or in the transport provider.

The most common of these errors are listed under the appropriate primitives. The
transport provider should issue fatal errors only if the transport user can not correct the
condition which caused the error or if the transport provider has no means of reporting a
transport user correctable error. If the transport provider detects an uncorrectable non-
protocol error internal to the transport provider, the provider should issue a fatal error to
the user.

Fatal errors are indicated to the transport user via the STREAMS message type M_ERROR
with the UNIX System error EPROTO. This is the only type of error that the transport
provider should use to indicate a fatal protocol error to the transport user. The message
M_ERROR will result in the failure of all the operating system service routines on the
stream. The only way for a user to recover from a fatal error is to ensure that all
processes close the file associated with the stream. At that point, the user may reopen the
file associated with the stream.

Revision: 1.5 Page 29 Date: 92/12/10

Transport Service Interface Sequence of Primitives

2.6 Transport Service Interface Sequence of Primitives

The allowable sequence of primitives are described in the state diagrams and tables in
section 4 for both the connection-mode and connectionless-mode transport services. The
following are rules regarding the maintenance of the state of the interface:

• It is the responsibility of the transport provider to keep record of the state of the
interface as viewed by the transport user.

• The transport provider must never issue a primitive that places the interface out of
state.

• The uninitialized state of a stream is the initial and final state, and it must be bound
(see T_BIND_REQ primitive) before the transport provider may view it as an active
stream.

• If the transport provider sends a M_ERROR upstream, it should also drop any further
messages received on its write side of the stream.

The following rules apply only to the connection-mode transport services.

• A transport connection release procedure can be initiated at any time during the
transport connection establishment or data transfer phase.

• The state tables for the connection-mode transport service providers include the
management of the sequence numbering when a transport provider sends multiple
T_CONN_IND requests without waiting for the response of the previously sent
indication. It is the responsibility of the transport providers not to change state until
all the indications have been responded to, therefore the provider should remain in
the T_WRES_CIND state while there are any outstanding connect indications pending
response. The provider should change state appropriately when all the connect
indications have been responded to.

• The only time the state of a transport service interface of a stream may be transferred
to another stream is when it is indicated in a T_CONN_RES primitive. The following
rules then apply to the cooperating streams:

— The stream which is to accept the current state of the interface must be bound to
an appropriate protocol address and must be in the idle state.

— The user transferring the current state of a stream must have correct permissions
for the use of the protocol address bound to the accepting stream.

— The stream which transfers the state of the transport interface must be placed into
an appropriate state after the completion of the transfer.

Revision: 1.5 Page 30 Date: 92/12/10

TPI Specification

2.7 Precedence of Transport Interface Primitives on a Stream

The following rules apply to the precedence of transport interface primitives with respect
to their position on a stream13:

• The transport provider has responsibility for determining precedence on its stream
write queue, as per the rules in section 5. The appendix specifies the rules for
precedence for both the connection-mode and connectionless-mode transport
services.

• The transport user has responsibility for determining precedence on its stream read
queue, as per the rules in section 5.

• All primitives on the stream are assumed to be placed on the queue in the correct
sequence as defined above.

The following rules apply only to the connection-mode transport services.

• There is no guarantee of delivery of user data once a T_DISCON_REQ primitive has
been issued.

13. The stream queue which contains the transport user initiated primitives is referred to as the stream
write queue. The stream queue which contains the transport provider initiated primitives is referred to
as the stream read queue.

Revision: 1.5 Page 31 Date: 92/12/10

Rules for Flushing Queues

2.8 Rules for Flushing Queues

The following rules pertain to flushing the stream queues. No other flushes should be
needed to keep the queues in the proper condition.

• The transport providers must be aware that they will receive M_FLUSH messages
from upstream. These flush requests are issued to ensure that the providers receive
certain messages and primitives. It is the responsibility of the providers to act
appropriately as deemed necessary by the providers.

• The transport provider must send up a M_FLUSH message to flush both the read and
write queues after receiving a successful T_UNBIND_REQ message and prior to
issuing the T_OK_ACK primitive.

The following rules pertain only to the connection-mode transport providers.

• If the interface is in the T_DATA_XFER, T_WIND_ORDREL or T_WACK_ORDREL
state, the transport provider must send up a M_FLUSH message to flush both the read
and write queues before sending up a T_DISCON_IND.

• If the interface is in the T_DATA_XFER, T_WIND_ORDREL or T_WACK_ORDREL
state, the transport provider must send up a M_FLUSH message to flush both the read
and write queues after receiving a successful T_DISCON_REQ message and before
issuing the T_OK_ACK primitive.

Revision: 1.5 Page 32 Date: 92/12/10

TPI Specification

3. Mapping of Transport Primitives to OSI

The following table maps those transport primitives as seen by the transport provider to
the STREAMS message types used to realize the primitives and to the ISO IS 8072 and IS
8072/DAD1 transport service definition primitives.

Transport Stream IS 8072 Transport
Primitives Message Types Primitives

T_CONN_REQ M_PROTO T-CONNECT request

T_CONN_IND M_PROTO T-CONNECT indication

T_CONN_RES M_PROTO T-CONNECT response

T_CONN_CON M_PROTO T-CONNECT confirm

T_DATA_REQ M_PROTO T-DATA request

T_DATA_IND M_PROTO T-DATA indication

T_EXDATA_REQ M_PROTO T-EXPEDITED-DATA request

T_EXDATA_IND M_PROTO T-EXPEDITED-DATA indication

T_DISCON_REQ M_PROTO T-DISCONNECT request

T_DISCON_IND M_PROTO T-DISCONNECT indication

T_UNITDATA_REQ M_PROTO T-UNITDATA request

T_UNITDATA_IND M_PROTO T-UNITDATA indication

T_ORDREL_REQ M_PROTO not defined in ISO

T_ORDREL_IND M_PROTO not defined in ISO

T_BIND_REQ M_PROTO not defined in ISO

T_BIND_ACK M_PCPROTO not defined in ISO

T_UNBIND_REQ M_PROTO not defined in ISO

T_OK_ACK M_PCPROTO not defined in ISO

T_ERROR_ACK M_PCPROTO not defined in ISO

T_INFO_REQ M_PCPROTO not defined in ISO

T_INFO_ACK M_PCPROTO not defined in ISO

T_UDERR_IND M_PROTO not defined in ISO

T_OPTMGMT_REQ M_PROTO not defined in ISO

T_OPTMGMT_ACK M_PCPROTO not defined in ISO

T_ADDR_REQ M_PROTO not defined in ISO

T_ADDR_ACK M_PCPROTO not defined in ISO

Figure 2. Mapping ISO IS 8072 and IS 8072/DAD1 to Kernel-level Transport Service Primitives

Revision: 1.5 Page 33 Date: 92/12/10

Revision: 1.5 Page 34 Date: 92/12/10

TPI Specification

4. Allowable Sequence of Transport Service Primitives

The following tables describe the possible events that may occur on the interface and the
possible states as viewed by the transport user that the interface may enter due to an
event. The events map directly to the transport service interface primitives as described
in section 2.

Possible States

state abbreviation description service type

sta_0 unbnd unbound T_COTS, T_COTS_ORD,
T_CLTS

sta_1 w_ack b_req awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_BIND_REQ T_CLTS

sta_2 w_ack u_req awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_UNBIND_REQ T_CLTS

sta_3 idle idle - no connection T_COTS, T_COTS_ORD,
T_CLTS

sta_4 w_ack op_req awaiting acknowledgment T_COTS, T_COTS_ORD,
of T_OPTMGMT_REQ T_CLTS

sta_5 w_ack c_req awaiting acknowledgment T_COTS, T_COTS_ORD
of T_CONN_REQ

sta_6 w_con c_req awaiting confirmation T_COTS, T_COTS_ORD
of T_CONN_REQ

sta_7 w_res c_ind awaiting response T_COTS, T_COTS_ORD
of T_CONN_IND

sta_8 w_ack c_res awaiting acknowledgment T_COTS, T_COTS_ORD
of T_CONN_RES

sta_9 data_t data transfer T_COTS, T_COTS_ORD

sta_10 w_ind or_rel awaiting T_ORDREL_IND T_COTS_ORD

sta_11 w_req or_rel awaiting T_ORDREL_REQ T_COTS_ORD

sta_12 w_ack dreq6 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ

sta_13 w_ack dreq7 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ

sta_14 w_ack dreq9 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ

sta_15 w_ack dreq10 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ

sta_16 w_ack dreq11 awaiting acknowledgment T_COTS, T_COTS_ORD
of T_DISCON_REQ

Figure 3. Kernel Level Transport Interface States

Revision: 1.5 Page 35 Date: 92/12/10

Allowable Sequence of Transport Service Primitives

Variables and Outputs

The following describes the variables and outputs used in the state tables.

variable description

q queue pair pointer of current stream

rq queue pair pointer of responding stream
as described in the T_CONN_RES primitive

outcnt counter for the number of outstanding
connection indications not responded to
by the transport user

Figure 4. State table Variables

output description

[1] outcnt = 0

[2] outcnt = outcnt + 1

[3] outcnt = outcnt - 1

[4] pass connection to queue as indicated
in the T_CONN_RES primitive

Figure 5. State Table Outputs

Revision: 1.5 Page 36 Date: 92/12/10

TPI Specification

Outgoing Events

The following outgoing events are those which are initiated from the transport service
user. They either make requests of the transport provider or respond to an event of the
transport provider.

event description service type

bind_req bind request T_COTS, T_COTS_ORD,
T_CLTS

unbind_req unbind request T_COTS, T_COTS_ORD,
T_CLTS

optmgmt_req options mgmt request T_COTS, T_COTS_ORD,
T_CLTS

conn_req connection request T_COTS, T_COTS_ORD

conn_res connection response T_COTS, T_COTS_ORD

discon_req disconnect request T_COTS, T_COTS_ORD

data_req data request T_COTS, T_COTS_ORD

exdata_req expedited data request T_COTS, T_COTS_ORD

ordrel_req orderly release request T_COTS_ORD

unitdata_req unitdata request T_CLTS

Figure 6. Kernel Level Transport Interface Outgoing Events

Revision: 1.5 Page 37 Date: 92/12/10

Allowable Sequence of Transport Service Primitives

Incoming Events

The following incoming events are those which are initiated from the transport provider.
They are either confirmations of a request or are indications to the transport user that an
event has occurred.

event description service type

bind_ack bind acknowledgment T_COTS, T_COTS_ORD,
T_CLTS

optmgmt_ack options mgmt acknowledgment T_COTS, T_COTS_ORD,
T_CLTS

error_ack error acknowledgment T_COTS, T_COTS_ORD,
T_CLTS

ok_ack1 ok acknowledgment T_COTS, T_COTS_ORD,
outcnt == 0 T_CLTS

ok_ack2 ok acknowledgment T_COTS, T_COTS_ORD,
outcnt == 1, q == rq

ok_ack3 ok acknowledgment T_COTS, T_COTS_ORD,
outcnt == 1, q != rq

ok_ack4 ok acknowledgment T_COTS, T_COTS_ORD,
outcnt > 1

conn_ind connection indication T_COTS, T_COTS_ORD

conn_con connection confirmation T_COTS, T_COTS_ORD

data_ind data indication T_COTS, T_COTS_ORD

exdata_ind expedited data indication T_COTS, T_COTS_ORD

ordrel_ind orderly release indication T_COTS_ORD

discon_ind1 disconnect indication T_COTS, T_COTS_ORD
outcnt == 0

discon_ind2 disconnect indication T_COTS, T_COTS_ORD
outcnt == 1

discon_ind3 disconnect indication T_COTS, T_COTS_ORD
outcnt > 1

pass_conn pass connection T_COTS, T_COTS_ORD

unitdata_ind unitdata indication T_CLTS

uderror_ind unitdata error indication T_CLTS

Figure 7. Kernel Level Transport Interface Incoming Events

Revision: 1.5 Page 38 Date: 92/12/10

TPI Specification

Transport Service State Tables

The following tables describes the possible next states the interface may enter given a
current state and event.

The contents of each box represent the next state given the current state (column) and the
current incoming or outgoing event (row). An empty box represents a state/event
combination that is invalid. Along with the next state, each box may include an action.
The transport provider must take the specific actions in the order specified in the state
table.

sta_1

sta_0

sta_0

sta_3 sta_4

sta_3

sta_3

sta_3 sta_3

[1]

sta_4

unbnd

optmgmt_ack

ok_ack1

error_ack

bind_ack

optmgmt_req

unbind_req

bind_req

op_reqb_req u_req idle w_ackw_ackw_ack
sta_0 sta_1state

event

sta_2

sta_2

Figure 8. Initialization State Table

Revision: 1.5 Page 39 Date: 92/12/10

Allowable Sequence of Transport Service Primitives

state
event

discon_req

data_req

exdata_req

ordrel_req

conn_ind

conn_con

data_ind

exdata_ind

ordrel_ind

discon_ind1

discon_ind2

discon_ind3

error_ack

ok_ack1

ok_ack2

ok_ack3

ok_ack4

pass_conn

**

**

conn_req

conn_res

dreq10dreq7dreq6

sta_16

sta_16

sta_15

sta_15

dreq11dreq9
w_ackw_ackw_ackw_ackw_ack

sta_14

sta_14

or_relor_rel

[3] [3]

[3]

[3]

[4]

[4][3]

[3]

[3]

[3]

sta_6

sta_6

sta_6

sta_3

sta_3sta_3

sta_3

sta_3

sta_3

sta_3

sta_3 sta_3 sta_3

sta_3

sta_3

sta_3

sta_3

sta_3

sta_3

sta_5

sta_5

idle
w_ack
c_req c_req

[2][2]

sta_9

sta_9

sta_9

sta_9

sta_9

sta_9

sta_9

sta_9

sta_9

w_res
c_ind

sta_10

sta_10

sta_10

sta_10

sta_10

w_ack
c_res

sta_11

sta_11

sta_11

sta_11

sta_11

data_t

sta_12

sta_12

w_ind
sta_13

sta_13

w_req
sta_8

sta_8

w_con
sta_7

sta_7

sta_7

sta_7 sta_7

sta_7

sta_7 sta_7

sta_9

sta_0

unbnd

** Only supported if service is type T_COTS_ORD

Figure 9. Connection/Release/Data-Transfer State Table for Connection Oriented Service

Revision: 1.5 Page 40 Date: 92/12/10

TPI Specification

sta_3

sta_3

sta_3

sta_3

unitdata_req

unitdata_ind

uderror_ind

idle
state

event

Figure 10. Data-Transfer State Table for Connectionless Service

Revision: 1.5 Page 41 Date: 92/12/10

Revision: 1.5 Page 42 Date: 92/12/10

TPI Specification

5. Transport Primitive Precedence

The following describes the precedence of the transport primitives for both the stream14

write and read queues.

Y

t_addr_req

t_info_req

t_conn_req
t_conn_res

t_discon_req
t_data_req

t_exdata_req
t_bind_req

t_unbind_req
t_info_req

X

t_ordrel_req
t_optmgmt_req
t_unitdata_req

it is the same as 3
(choice of user) and if X does, then

5 : X may have precedence over Y
both X and Y must be removed

4 : X has precedence over Y and
and Y must be removed

3 : X has precedence over Y
2 : X has precedence over Y

1 : X has no precedence over Y
blank: not applicable / queue should be empty

Key

t_addr_req

t_unbind_req
t_bind_req

t_exdata_req
t_data_req

t_discon_req
t_conn_res
t_conn_req

t_unitdata_req
t_optmgmt_req

t_ordrel_req 5

4
3

2
5
5

1

1
1

11
1

Figure 11. Stream Write Queue Precedence Table

14. The stream queue which contains the transport user initiated primitives is referred to as the stream
write queue. The stream queue which contains the transport provider initiated primitives is referred to
as the stream read queue.

Revision: 1.5 Page 43 Date: 92/12/10

Transport Primitive Precedence

t_ok_ack
t_unitdata_ind
t_uderror_ind

t_optmgmt_ack
t_ordrel_ack

2
22

2

2 2

2

Key

blank: not applicable / queue should be empty

1 : X has no precedence over Y

2 : X has precedence over Y

3 : X has precedence over Y
and Y must be removed

4 : X has precedence over Y and
both X and Y must be removed

5 : X may have precedence over Y
(choice of user) and if X does, then
it is the same as 3

t_ordrel_ack
t_optmgmt_ack
t_uderror_ind
t_unitdata_ind

t_ok_ack
t_error_ack
t_bind_ack
t_info_ack

t_exdata_ind
t_data_ind

t_discon_ind
t_conn_con

X

t_conn_ind

t_conn_ind

Y

2

1

1
1
1
1

11

1
1

1

1

1

1

1

1
1

1

1
1

1

1

1

11 1
1 1

1

11

3
4

5

5
5

t_addr_ack

t_addr_ack

t_conn_con
t_discon_ind
t_data_ind
t_exdata_ind
t_info_ack
t_bind_ack
t_error_ack

Figure 12. Stream Read Queue Precedence Table

Revision: 1.5 Page 44 Date: 92/12/10

TPI Specification

PLEASE DISCARD THIS PAGE!!!

Revision: 1.5 - xlv - Date: 92/12/10

Table of Contents

1. Introduction . 1

2. Transport Provider Interface 3
2.1 Common Transport Primitives 5

2.1.1 User-Originated Primitives 5
2.1.1.1 T_INFO_REQ - get transport protocol parameter

sizes. 5
2.1.1.2 T_BIND_REQ - bind protocol address request. 5
2.1.1.3 T_UNBIND_REQ - unbind protocol address

request. 7
2.1.1.4 T_OPTMGMT_REQ - options management. 7
2.1.1.5 T_ADDR_REQ - get protocol addresses request. 9

2.1.2 Provider-Originated Primitives 9
2.1.2.1 T_INFO_ACK - protocol information

acknowledgment. 9
2.1.2.2 T_BIND_ACK - bind protocol address

acknowledgment. 12
2.1.2.3 T_OPTMGMT_ACK - option management

acknowledgment. 13
2.1.2.4 T_ERROR_ACK - error acknowledgment. 14
2.1.2.5 T_OK_ACK - success acknowledgment. 15
2.1.2.6 T_ADDR_ACK - get protocol addresses

acknowledgment. 16
2.2 Connection-Mode Transport Primitives 17

2.2.1 User-Originated Primitives 17
2.2.1.1 T_CONN_REQ - connect request. 17
2.2.1.2 T_CONN_RES - connection response. 18
2.2.1.3 T_DISCON_REQ - disconnect request. 19
2.2.1.4 T_DATA_REQ - data request. 20
2.2.1.5 T_EXDATA_REQ - expedited data request. 21
2.2.1.6 T_ORDREL_REQ - orderly release request. 22

2.2.2 Provider-Originated Primitives 22
2.2.2.1 T_CONN_IND - connect indication. 23
2.2.2.2 T_CONN_CON - connection confirm. 23
2.2.2.3 T_DISCON_IND - disconnect indication. 23
2.2.2.4 T_DATA_IND - data indication. 24
2.2.2.5 T_EXDATA_IND - expedited data indication. 24
2.2.2.6 T_ORDREL_IND - orderly release indication. 25

2.3 Connectionless-Mode Transport Primitives 26
2.3.1 User-Originated Primitives 26

2.3.1.1 T_UNITDATA_REQ - unitdata request. 26
2.3.2 Provider-Originated Primitives 26

Revision: 1.5 - i - Date: 92/12/10

2.3.2.1 T_UNITDATA_IND - unitdata indication. 26
2.3.2.2 T_UDERROR_IND - unitdata error indication. 27

2.4 Note about Structure Elements 28
2.5 Overview of Error Handling Capabilities 29

2.5.1 Non-fatal Errors 29
2.5.2 Fatal Errors 29

2.6 Transport Service Interface Sequence of Primitives 30
2.7 Precedence of Transport Interface Primitives on a Stream 31
2.8 Rules for Flushing Queues 32

3. Mapping of Transport Primitives to OSI 33

4. Allowable Sequence of Transport Service Primitives 35

5. Transport Primitive Precedence 43

List of Figures

Figure 1. Example of a stream from a user to a transport provider 3

Figure 2. Mapping ISO IS 8072 and IS 8072/DAD1 to Kernel-level Transport
Service Primitives 33

Figure 3. Kernel Level Transport Interface States 35

Figure 4. State table Variables 36

Figure 5. State Table Outputs 36

Figure 6. Kernel Level Transport Interface Outgoing Events 37

Figure 7. Kernel Level Transport Interface Incoming Events 38

Figure 8. Initialization State Table 40

Figure 9. Connection/Release/Data-Transfer State Table for Connection Oriented
Service 40

Figure 10. Data-Transfer State Table for Connectionless Service 41

Figure 11. Stream Write Queue Precedence Table 44

Figure 12. Stream Read Queue Precedence Table 44

Revision: 1.5 - ii - Date: 92/12/10

Revision: 1.5 - iii - Date: 92/12/10

