
STREAMS-based vs. Legacy Pipe Performance Comparison

Experiment Test Results for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

July 26, 2008†

Abstract

With the objective of contrasting performance between
STREAMS and legacy approaches to system facilities, a com-
parison is made between the tested performance of the Linux
legacy pipe implementation and the STREAMS-based pipe im-
plementation using the Linux Fast-STREAMS package [LfS].

1 Background

Pipes have a rich history in the UNIX operating system. Present
on early Bell Laboratories UNIX Versions, pipes found their way
into both BSD and System V releases. Finally, in 4.4BSD pipes
are implemented with Sockets and in System V Release 4 pipes
are implemented with STREAMS.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Dennis M.
Ritchie in 1984 [Rit84], originally implemented on 4.1BSD and
later part of Bell Laboratories Eighth and Ninth Edition UNIX,
incorporated into UNIX System V Release 3 and enhanced in
UNIX System V Release 4 and further in UNIX System V Re-
lease 4.2. STREAMS was used in SVR4 for terminal input-
output, pseudo-terminals, pipes, named pipes (FIFOs), interpro-
cess communication and networking. Since its release in System
V Release 3, STREAMS has been implemented across a wide
range of UNIX, UNIX-like and UNIX-based systems, making its
implementation and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable full
duplex communications path, Stream, between a user process and
a driver in the kernel. Kernel protocol modules can be pushed
onto and popped from the Stream between the user process and
driver. The Stream can be reconfigured in this way by a user
process. The user process, neighbouring protocol modules and
the driver communicate with each other using a message passing
scheme. This permits a loose coupling between protocol modules,
drivers and user processes, allowing a third-party and loadable
kernel module approach to be taken toward the provisioning of
protocol modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used for ter-
minal input-output, pipes, FIFOs (named pipes), and network
communications. Modern UNIX, UNIX-like and UNIX-based
systems providing STREAMS normally support some degree
of network communications using STREAMS; however, many
do not support STREAMS-based pipe and FIFOs1 or terminal
input-output2 directly or without reconfiguration.

1.2 Pipe Implementation

Traditionally there have been two approaches to implementation
of pipes and named pipes (FIFOs):

Legacy Approach to Pipes.

Under the 4.1BSD or SVR3 approach, pipes were implemented
using anonymous FIFOs. That is, when a pipe was opened, a new
instance of a FIFO was obtained, but which was not attached to

a node in the file system and which had two file descriptors: one
open for writing and the other opened for reading. As FIFOs are
a fundamentally unidirectional concept, legacy pipes can only
pass data in one direction. Also, legacy pipes do not support the
concept of record boundaries and only support a byte stream.
Each end of the pipe uses a the legacy interface and they do not
provide any of the advanced capabilities provided by STREAMS.

SVR4 Approach to Pipes.

Under the SVR4 approach, both pipes and FIFOs are imple-
mented using STREAMS [GC94]. When a pipe is opened, a new
instance of a STREAMS-based pipe is obtained, but which is at-
tached to a non-accessible node in the fifofs file system instead
of the normal STREAMS specfs file system. Although one file
descriptor was opened for read and the other for write, with a
STREAMS-based pipe it is possible to reopen both for reading
and writing.

Stream

head

WQ RQ

midpoint

WQ RQ

Stream

head

Figure 1: STREAMS-Based Pipes

The STREAMS-based pipes provide the same rich set of
facilities that are also available for other STREAMS devices
such as pseudo-terminals and network interfaces. As a result,
STREAMS-based pipes provide a number of capabilities that are
not provided by legacy pipes:

Full Duplex. STREAMS-based pipes are full duplex pipes.
That is, each end of the pipe can be used for reading and
writing. To accomplish the same effect with legacy pipes
requires that two legacy pipes be opened.

Pushable Modules. STREAMS-based pipes can have
STREAMS modules pushed an popped from either
end of the pipe, just as any other STREAMS device.

File Attachment. STREAMS-based pipes can have either end
(or both ends) attached to a node in the file system using
fattach(3) [Ste97].

File Descriptor Passing. STREAMS-based pipes can pass file
descriptors across the pipe using the I SENDFD and I RECVFD

input-output controls [Ste97].

∗bidulock@openss7.org
†Original edition June 16, 2007

1. For example, AIX.

2. For example, HP-UX.

1

Record Boundary Preservation. STREAMS-based pipes can
preserve record boundaries and can pass messages atomi-
cally using the getmsg(2) and putmsg(2) system calls.

Prioritization of Messages. STREAMS-based pipes can pass
messages in priority bands using the getpmsg(2) and
putpmsg(2) system calls.

BSD Approach to Pipes.

As of 4.2BSD, with the introduction of Sockets, pipes were imple-
mented using the networking subsystem (UNIX domain sockets)
for what was cited as ”performance reasons” [MBKQ97]. The
pipe(2) library call effectively calls sockpair(3) and obtains a pair
of connected sockets in the UNIX domain as illustrated in Figure
2.

Domain

UNIX

Protocol

SocketSocket

Figure 2: 4.2BSD Pipes

Knowing the result of this testing, I can only imagine that
the ”performance reasons” had to do with the lack of a full flow
control mechanism in the legacy file system based pipes.

Linux Approach to Pipes.

Linux adopts the legacy (4.1BSD or SVR3 pre-STREAMS) ap-
proach to pipes. Pipes are file system based, and obtain an inode

from the pipefs file system as illustrated in Figure 3. Pipes are
unnamed FIFOs, unidirectional byte streams, and do not provide
any of the capabilities of STREAMS-based pipes or socket pairs
in the UNIX domain.3

pipe

private

data and

buffers

file

descriptor descriptor

file

pointer

file

pipefs

inode

i_pipe

Figure 3: Linux Legacy Pipes

Standardization.

During the POSIX standardization process, pipes and FIFOs
were given special treatment to ensure that both the legacy ap-
proach to pipes, 4.2BSD approach and the STREAMS-based ap-
proach to pipes were compatible. POSIX has standardized the
programmatic interface to pipes. STREAMS-based pipes have
been POSIX compliant for many years and were POSIX compli-
ant in the SVR4.2 release. The STREAMS-based pipes provided
by the Linux Fast-STREAMS package provides POSIX compli-
ant STREAMS-based pipes.

As a result, any application utilizing a legacy Linux pipe
in a POSIX compliant manner will also be compatible with
STREAMS-based pipes.4

1.3 Linux Fast-STREAMS

The first STREAMS package for Linux that provided SVR4
STREAMS capabilities was the Linux STREAMS (LiS) package
originally available from GCOM. This package exhibited incom-
patibilities with SVR 4.2 STREAMS and other STREAMS im-
plementations, was buggy and performed very poorly on Linux.
These difficulties prompted the OpenSS7 Project [SS7] to imple-
ment an SVR 4.2 STREAMS package from scratch, with the ob-
jective of production quality and high-performance, named Linux
Fast-STREAMS.

The OpenSS7 Project [SS7] also maintains public and internal
versions of the LiS package. The last public release was LiS-
2.18.3 ; the current internal release version is LiS-2.18.6. The
current production public release of Linux Fast-STREAMS is
streams-0.9.3.

2 Objective

The objective of the current study is to determine whether,
for the Linux operating system, the newer STREAMS-based
pipe approach is (from the perspective of performance) a vi-
able replacement for the legacy 4.1BSD/SVR3-style pipes pro-
vided by Linux. As a side objective, a comparison is also made
to STREAMS-based pipes implemented on the deprecated LiS
(Linux STREAMS) package. This comparison will demonstrate
one reason why Linux Fast-STREAMS was written in the first
place.

Misconceptions When developing STREAMS, the authors oft
times found that there were a number of preconceptions from
Linux advocates about both STREAMS and STREAMS-based
pipes, as follows:

• STREAMS is slow.

• STREAMS is more flexible, but less efficient [LML].

• STREAMS performs poorly on uniprocessor and even
poorer on SMP.

• STREAMS-based pipes are slow.

• STREAMS-based pipes are unnecessarily complex and cum-
bersome.

For example, the Linux kernel mailing list has this to say about
STREAMS:

(REG) STREAMS allow you to ”push” filters onto a network
stack. The idea is that you can have a very primitive
network stream of data, and then ”push” a filter (”mod-
ule”) that implements TCP/IP or whatever on top of
that. Conceptually, this is very nice, as it allows clean

3. It has been said of Linux that, without STREAMS, it is just another
BSD... ...and not a very good one.

4. This compatibility is exemplified by the perftest(8) program which
does not distinguish between legacy and STREAMS-based pipes in their
implementation or use.

2

separation of your protocol layers. Unfortunately, imple-
menting STREAMS poses many performance problems.
Some Unix STREAMS based server telnet implementa-
tions even ran the data up to user space and back down
again to a pseudo-tty driver, which is very inefficient.

STREAMS will never be available in the standard
Linux kernel, it will remain a separate implementation
with some add-on kernel support (that come with the
STREAMS package). Linus and his networking gurus are
unanimous in their decision to keep STREAMS out of the
kernel. They have stated several times on the kernel list
when this topic comes up that even optional support will
not be included.

(REW, quoting Larry McVoy) ”It’s too bad, I can see why
some people think they are cool, but the performance cost
- both on uniprocessors and even more so on SMP boxes
- is way too high for STREAMS to ever get added to the
Linux kernel.”

Please stop asking for them, we have agreement amoungst
the head guy, the networking guys, and the fringe folks
like myself that they aren’t going in.

(REG, quoting Dave Grothe, the STREAMS guy)
STREAMS is a good framework for implementing
complex and/or deep protocol stacks having nothing to
do with TCP/IP, such as SNA. It trades some efficiency
for flexibility. You may find the Linux STREAMS
package (LiS) to be quite useful if you need to port
protocol drivers from Solaris or UnixWare, as Caldera
did.

The Linux STREAMS (LiS) package is available for download
if you want to use STREAMS for Linux. The following site also
contains a dissenting view, which supports STREAMS.

It is possible that the proponents of these statements have
worked in the past with an improper or under-performing
STREAMS implementation (such as LiS); however, the current
study aims to prove that none of these statements are correct for
the STREAMS-based pipes provided by the high-performance
Linux Fast-STREAMS.

3 Description

The three implementations tested vary in their implementation
details. These implementation details are described below.

3.1 Linux Pipes

Linux pipes are implemented using a file-system approach sim-
ilar to that of 4.1BSD, or that of SVR3 and SVR2 releases, or
their common Bell Laboratories predecessors, as illustrated in
Figure 3. It should be noted that 4.4BSD (and releases after
4.2BSD) implements pipes using Sockets and the networking sub-
system [MBKQ97]. Also, note that SVR4 implemented pipes us-
ing STREAMS. As such, the Linux pipe implementation is both
archaic and deprecated.

Write side processing. In response to a write(2) system call,
message bytes are copied from user space to kernel directly into
a preallocated buffer. The tail pointer is pushed on the buffer. If
the buffer is full at the time of the system call, the calling pro-
cess blocks, or the system call fails and returns an error number
(EAGAIN or EWOULDBLOCK).

Read side processing. In response to a read(2) system call,
message bytes are copied from the preallocated buffer to user
space. The head pointer is pushed on the buffer. If the buffer is
empty at the time of the system call, the calling process blocks,
or the system call fails and returns an error number (EAGAIN or
EWOULDBLOCK).

Buffering. If a writer goes to write and there is no more room
left in the buffer for the requested write, the writer blocks or
the system call is failed (EAGAIN). If a reader goes to read and
there are no bytes in the buffer, the reader blocks or the system
call is failed (EAGAIN). If there are fewer bytes in the buffer than
requested by the read operation, the available bytes are returned.
No queueing or flow control is performed.

Scheduling. When a writer is blocked or polling for write, the
writer is awoken once there is room to write at least 1 byte into
the buffer. When a reader is blocked or polling for read, the
reader is awoken once there is at least 1 byte in the buffer.

3.2 STREAMS-based Pipes

STREAMS-based pipes are implemented using a specialized
STREAMS driver that connects the read and write queues of
two Stream heads in a twisted pair configuration as illustrated
in Figure 1. Aside from a few specialized settings particular to
pipes, each Stream head acts in the same fashion as the Stream
head for any other STREAMS device or pseudo-device.

Write side processing. In response to a write(2) system call,
message bytes are copied from user space into allocated message
blocks. Message blocks are passed downstream to the next mod-
ule (read Stream head) in the Stream. If flow control is in effect
on the write queue at the time of the system call, the calling
process blocks, or the system call fails and returns an error num-
ber (EAGAIN). Also, STREAMS has a write message coalescing
feature that allows message blocks to be held temporarily on the
write queue awaiting execution of the write queue service proce-
dure (invoked by the STREAMS scheduler) or the occurrence of
another write operation.

Read side processing. In response to a read(2) system call,
message blocks are removed from the read queue and message
bytes copied from kernel to user space. If there are no message
blocks in the read queue at the time of the system call, the call-
ing process blocks, or the system call fails and returns and error
number (EAGAIN). Also, STREAMS has a read notification fea-
ture that causes a read notification message (M READ) containing
the requested number of bytes to be issued and passed down-
stream before blocking. STREAMS has an additional read-fill
mode feature which causes the read side to attempt to satisfy the
entire read request before returning to the user.

Buffering. If a writer goes to write and the write queue is flow
controlled, the writer blocks or the system call is failed (EAGAIN).
If a reader goes to read and there are no message blocks available,
the reader blocks or the system call is failed (EAGAIN). If there are
fewer bytes available in message blocks on the read queue than
requested by the read operation, the available bytes are returned.
Normal STREAMS queueing and flow control is performed as
message blocks are passed along the write side or removed from
the read queue.

Scheduling. When a write is blocked or polling for write, the
writer is awoken once flow control subsides on the write side.
Flow control subsides when the downstream module’s queue on
the write side falls below its low water mark, the Stream is back-
enabled, and the write queue service procedure runs. When a
reader is blocked or polling for read, the reader is awoken once the
read queue service procedure runs. The read queue service pro-
cedure is scheduled when the first message block is placed on the
read queue after an attempt to remove a message block from the
queue failed. The service procedure runs when the STREAMS
scheduler runs.

4 Method

To test the performance of STREAMS-based pipes, the Linux
Fast-STREAMS package was used [LfS]. The Linux Fast-
STREAMS package builds and install Linux loadable kernel mod-
ules and includes the perftest program used for testing. For
comparison, the LiS package [LiS] was used for comparison.

3

4.1 Test Program

To test the maximum throughput performance of both legacy
pipes and STREAMS-based pipes, a test program was written,
called perftest. The perftest program is part of the Linux
Fast-STREAMS distribution [LfS]. The test program performs
the following actions:

1. Opens either a legacy pipe or a STREAMS-based pipe.

2. Forks two child processes: a writer child process and a reader
child process.

3. The writer child process closes the reading end of the pipe.

4. The writer child process starts an interval timer.

5. The writer child process begins writing data to the pipe end
with the write(2) system call.

6. As the writer child process writes to the pipe end, it tal-
lies the amount of data written. When the interval timer
expires, the tally is output and the interval timer restarted.

7. The reader child process closes the writing end of the pipe.

8. The reader child process starts an interval timer.

9. The reader child process begins reading data from the pipe
end with the read(2) system call.

10. As the reader child process reads from the pipe end, it tal-
lies the amount of data written. When the interval timer
expires, the tally is output and the interval timer restarted.

The test program thus simulates a typical use of pipes in a
Linux system. The perftest script performance testing script
was used to obtain repeatable results (see Appendix A).

4.2 Distrbutions Tested

To remove the dependence of test results on a particular Linux
kernel or machine, various Linux distributions were used for test-
ing. The distributions tested are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7
CentOS 4 2.6.9-5.0.3.EL
CentOS 5 2.6.18-8-el5
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-generic
Fedora Core 6 2.6.20-1.2933.fc6

4.3 Test Machines

To remove the dependence of test results on a particular machine,
various machines were used for testing as follows:

Hostname Processor Memory Architecture

porky 2.57GHz PIV 1Gb (333MHz) i686 UP
pumbah 2.57GHz PIV 1Gb (333MHz) i686 UP
daisy 3.0GHz i630 HT 1Gb (400MHz) x86 64 SMP
mspiggy 1.7GHz PIV 1Gb (333MHz) i686 UP

5 Results

The results for the various distributions and machines is tabu-
lated in Appendix B. The data is tabulated as follows:

Performance. Performance is charted by graphing the number of
writes per second against the logarithm of the write size.

Delay. Delay is charted by graphing the number of second per
write against the write size. The delay can be modelled as
a fixed write overhead per write operation and a fixed over-
head per byte written. This model results in a linear graph
with the intercept at 1 byte per write representing the fixed

per-write overhead, and the slope of the line representing
the per-byte cost. As all implementations use the same pri-
mary mechanisms for copying bytes to and from user space,
it is expected that the slope of each graph will be similar
and that the intercept will reflect most implementation dif-
ferences.

Throughput. Throughput is charted by graphing the logarithm
of the product of the number of writes per second and the
message size against the logarithm of the message size. It
is expected that these graphs will exhibit strong log-log-
linear (power function) characteristics. Any curvature in
these graphs represent throughput saturation.

Improvement. Improvement is charted by graphing the quotient
of the writes per second of the implementation and the
writes per second of the Linux legacy pipe implementation
as a percentage against the write size. Values over 0% repre-
sent an improvement over Linux legacy pipes, whereas values
under 0% represent the lack of an improvement.

The results are organized in the section that follow in order of
the machine tested.

5.1 Porky

Porky is a 2.57GHz Pentium IV (i686) uniprocessor machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 4 2.6.9-5.0.3.EL
SuSE 10.0 OSS 2.6.13-15-default
Ubuntu 6.10 2.6.17-11-generic
Ubuntu 7.04 2.6.20-15-generic

5.1.1 Fedora Core 6

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest
patches. This is the x86 distribution with recent updates.

Performance. Figure 4 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 4, the perfor-
mance of LiS is dismal across the entire range of write sizes.
The performance of Linux Fast-STREAMS STREAMS-
based pipes, on the other hand, is superior across the entire
range of write sizes. Performance of Linux Fast-STREAMS
is a full order of magnitude better than LiS.

Delay. Figure 5 illustrates the average write delay for LiS, Linux
Fast-STREAMS and Linux legacy pipes across a range of
write sizes. The slope of all three curves is comparable and
about the same. This indicates that each implementation is
only slightly dependent upon the size of the message and
each implementation has a low per-byte processing over-
head. This is as expected as pipes primarily copy data from
user space to the kernel just to copy it back to user space
on the other end. Note that the intercepts, on the other
hand, differ to a significant extent. Linux Fast-STREAMS
STREAMS-based pipes have by far the lowest per-write
overhead (about half that of the Linux legacy pipes, and
a sixth of LiS pipes).

Throughput. Figure 6 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 6, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementation
(regardless of performance).

4

Streams
Linux
LiS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 4: FC6 on Porky Performance

Streams
Linux
LiS

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 5: FC6 on Porky Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 6: FC6 on Porky Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 7: FC6 on Porky Comparison

Improvement. Figure 7 illustrates the improvement over Linux
legacy pipes of Linux Fast-STREAMS STREAMS-based
pipes. The improvement of Linux Fast-STREAMS over
Linux legacy pipes is marked: improvements range from a
significant 75% increase in performance at large write sizes,
to a staggering 200% increase in performance at lower write
sizes.

5.1.2 CentOS 4.0

CentOS 4.0 is a clone of the RedHat Enterprise 4 distribution.
This is the x86 version of the distribution. The distribution sports
a 2.6.9-5.0.3.EL kernel.

Performance. Figure 8 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 8, the perfor-
mance of LiS is dismal across the entire range of write sizes.
The performance of Linux Fast-STREAMS STREAMS-
based pipes, on the other hand, is superior across the entire
range of write sizes. Performance of Linux Fast-STREAMS
is a full order of magnitude better than LiS.

Delay. Figure 9 illustrates the average write delay for LiS, Linux
Fast-STREAMS and Linux legacy pipes across a range of
write sizes. The slope of all three curves is comparable and
about the same. This indicates that each implementation is
only slightly dependent upon the size of the message and
each implementation has a low per-byte processing over-
head. This is as expected as pipes primarily copy data from
user space to the kernel just to copy it back to user space
on the other end. Note that the intercepts, on the other
hand, differ to a significant extent. Linux Fast-STREAMS
STREAMS-based pipes have by far the lowest per-write
overhead (about half that of the Linux legacy pipes, and
a sixth of LiS pipes).

Throughput. Figure 10 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 10, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementation
(regardless of performance).

Improvement. Figure 11 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is marked: improvements range from
a significant 100% increase in performance at large write
sizes, to a staggering 275% increase in performance at lower
write sizes.

5.1.3 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the SuSE/Novell
distribution. There have been two releases subsequent to this
one: the 10.1 and recent 10.2 releases. The SuSE 10 release
sports a 2.6.13 kernel and the 2.6.13-15-default kernel was the
tested kernel.

Performance. Figure 12 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 12, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of Linux
Fast-STREAMS is a full order of magnitude better than LiS.

Delay. Figure 13 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a

5

Streams
Linux
LiS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 550000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 8: CentOS 4.0 on Porky Performance

Streams
Linux
LiS

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 9: CentOS 4.0 on Porky Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 10: CentOS 4.0 on Porky Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

250%

300%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 11: CentOS 4.0 on Porky Comparison

Streams
Linux
LiS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 12: SuSE 10.0 OSS on Porky Performance

Streams
Linux
LiS

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 13: SuSE 10.0 OSS on Porky Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 14: SuSE 10.0 OSS on Porky Throughput

Streams
Linux
LiS

−100%

 0%

100%

200%

300%

400%

500%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 15: SuSE 10.0 OSS on Porky Comparison

6

range of write sizes. The slope of the delay curves are simi-
lar for all implementations, as expected. The zero intercept
of Linux Fast-STREAMS is, however, far superior to that
of legacy Linux and a full order of magnitude better than
the under-performing LiS.

Throughput. Figure 14 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 14, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion. The Linux Fast-STREAMS curve exhibits a downward
concave characteristic at large message sizes indicating that
the memory bus saturates at about 10Gbps.

Improvement. Figure 15 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 100% increase in performance at large write sizes, to
a 475% increase in performance at lower write sizes.

5.1.4 Ubuntu 6.10

Ubuntu 6.10 is the current release of the Ubuntu distribution.
The Ubuntu 6.10 release sports a 2.6.15 kernel. The tested dis-
tribution had current updates applied.

Performance. Figure 20 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 20, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of Linux
Fast-STREAMS is a full order of magnitude better than LiS.

Delay. Figure 21 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again, the slope of the delay curves
is similar, but Linux Fast-STREAMS exhibits a greatly re-
duced intercept indicating superior per-message overheads.

Throughput. Figure 22 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 22, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion. Again Linux Fast-STREAMS appears to saturate the
memory bus approaching 10Gbps.

Improvement. Figure 23 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 75% increase in performance at large write sizes, to
a 200% increase in performance at lower write sizes.

5.1.5 Ubuntu 7.04

Ubuntu 7.04 is the current release of the Ubuntu distribution.
The Ubuntu 7.04 release sports a 2.6.20 kernel. The tested dis-
tribution had current updates applied.

Performance. Figure 20 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 20, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Performance of Linux
Fast-STREAMS is a full order of magnitude better than LiS.

Streams
Linux
LiS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 16: Ubuntu 6.10 on Porky Performance

Streams
Linux
LiS

0.00000

0.00000

0.00001

0.00001

0.00001

0.00001

0.00001

0.00002

0.00002

0.00002

0.00002

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 17: Ubuntu 6.10 on Porky Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 18: Ubuntu 6.10 on Porky Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

250%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 19: Ubuntu 6.10 on Porky Comparison

7

Streams
Linux

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 20: Ubuntu 7.04 on Porky Performance

Streams
Linux

0.000001

0.000002

0.000003

0.000004

0.000005

0.000006

0.000007

0.000008

0.000009

0.000010

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 21: Ubuntu 7.04 on Porky Delay

Streams
Linux

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 22: Ubuntu 7.04 on Porky Throughput

Streams
Linux

 0%

 50%

100%

150%

200%

250%

300%

350%

400%

450%

500%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 23: Ubuntu 7.04 on Porky Comparison

Delay. Figure 21 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again, the slope of the delay curves
is similar, but Linux Fast-STREAMS exhibits a greatly re-
duced intercept indicating superior per-message overheads.

Throughput. Figure 22 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 22, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion. Again Linux Fast-STREAMS appears to saturate the
memory bus approaching 10Gbps.

Improvement. Figure 23 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 75% increase in performance at large write sizes, to
a 200% increase in performance at lower write sizes.

5.2 Pumbah

Pumbah is a 2.57GHz Pentium IV (i686) uniprocessor machine
with 1Gb of memory. This machine differs from Porky in memory
type only (Pumbah has somewhat faster memory than Porky.)
Linux distributions tested on this machine are as follows:

Distribution Kernel

RedHat 7.2 2.4.20-28.7

Pumbah is a control machine and is used to rule out differences
between recent 2.6 kernels and one of the oldest and most stable
2.4 kernels.

5.2.1 RedHat 7.2

RedHat 7.2 is one of the oldest (and arguably the most stable)
glibc2 based releases of the RedHat distribution. This distribu-
tion sports a 2.4.20-28.7 kernel. The distribution has all available
updates applied.

Performance. Figure 24 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 24, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. At a write size of
one byte, the performance of Linux Fast-STREAMS is an
order of magnitude greater than LiS.

Delay. Figure 25 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. The slope of all three graphs is sim-
ilar, indicating that memory caching and copy to and from
user performance on a byte-by-byte basis is similar. The
intercepts, on the other hand, are drastically different. LiS
per-message overheads are massive. Linux Fast-STREAMS
and Linux legacy pipes are far better. STREAMS-based
pipes have about one third of the per-message overhead of
legacy pipes.

Throughput. Figure 26 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 26, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementation
(despite performance differences). On Pumbah, as was ex-
perienced on Porky, Linux Fast-STREAMS is beginning to
saturate the memory bus at 10Gbps.

8

Streams
Linux
LiS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 24: RH7.2 on Pumbah Performance

Streams
Linux
LiS

0.00000

0.00000

0.00001

0.00001

0.00001

0.00001

0.00001

0.00002

0.00002

0.00002

0.00002

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 25: RH7.2 on Pumbah Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 26: RH7.2 on Pumbah Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 27: RH7.2 on Pumbah Comparison

Improvement. Figure 27 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 75% increase in performance at large write sizes, to a
175% increase in performance at lower write sizes. LiS pipes
waddle in at a 75% decrease in performance.

5.3 Daisy

Daisy is a 3.0GHz i630 (x86 64) hyper-threaded machine with
1Gb of memory. Linux distributions tested on this machine are
as follows:

Distribution Kernel

Fedora Core 6 2.6.20-1.2933.fc6
CentOS 5 2.6.18-8-el5
CentOS 5.2 2.6.18-92.1.6.el5.centos.plus

This machine is used as an SMP control machine. Most of
the test were performed on uniprocessor non-hyper-threaded ma-
chines. This machine is hyper-threaded and runs full SMP ker-
nels. This machine also supports EMT64 and runs x86 64 ker-
nels. It is used to rule out both SMP differences as well as 64-bit
architecture differences.

5.3.1 Fedora Core 6 (x86 64)

Fedora Core 6 is the most recent full release Fedora distribution.
This distribution sports a 2.6.20-1.2933.fc6 kernel with the latest
patches. This is the x86 64 distribution with recent updates.

Performance. Figure 28 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 28, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. The performance
of Linux Fast-STREAMS is almost an order of magnitude
greater than that of LiS.

Delay. Figure 29 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again the slope appears to be the same
for all implementations, except Linux legacy pipes which
exhibit some anomalies below 1024 byte write sizes. The
intercept for Linux Fast-STREAMS is again much superior
to the other two implementations.

Throughput. Figure 30 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 30, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion.

Improvement. Figure 31 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 100% increase in performance at large write sizes,
to a 175% increase in performance at lower write sizes. LiS
again drags in at -75%.

5.3.2 CentOS 5 (x86 64)

CentOS 5 is the most recent full release CentOS distribution.
This distribution sports a 2.6.18-8-el5 kernel with the latest
patches. This is the x86 64 distribution with recent updates.

Performance. Figure 32 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a

9

Streams
Linux
LiS

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 28: FC6 on Daisy Performance

Streams
Linux
LiS

 0

 5e−06

 1e−05

 1.5e−05

 2e−05

 2.5e−05

 3e−05

 3.5e−05

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 29: FC6 on Daisy Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 30: FC6 on Daisy Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 31: FC6 on Daisy Comparison

Streams
Linux

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 32: CentOS 5 on Daisy Performance

Streams
Linux

0.00000

0.00000

0.00001

0.00001

0.00001

0.00001

0.00001

0.00002

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 33: CentOS 5 on Daisy Delay

Streams
Linux

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 34: CentOS 5 on Daisy Throughput

Streams
Linux

−60%

−40%

−20%

 0%

 20%

 40%

 60%

 80%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 35: CentOS 5 on Daisy Comparison

10

range of write sizes. As can be see from Figure 32, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. The performance
of Linux Fast-STREAMS is almost an order of magnitude
greater than that of LiS.

Delay. Figure 33 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. Again the slope appears to be the same
for all implementations, except Linux legacy pipes which
exhibit some anomalies below 1024 byte write sizes. The
intercept for Linux Fast-STREAMS is again much superior
to the other two implementations.

Throughput. Figure 34 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 34, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion.

Improvement. Figure 35 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 100% increase in performance at large write sizes,
to a 175% increase in performance at lower write sizes. LiS
again drags in at -75%.

5.3.3 CentOS 5.2 (x86 64)

CentOS 5.2 is the most recent full release CentOS distribution.
This distribute sports a 2.6.18-92.1.6.el5.centos.plus kernel with
the latest patches. This is the x86 64 distribution with recent
updates.

This is a test result set that was updated July 26, 2008.
The additional options, -H, -M, -F and -w were added to the
perftest script command line. Also, streams-0.9.2.4 was
tested.

Performance. Figure 36 illustrates the performance of Linux
Fast-STREAMS and Linux legacy pipes across a range of
write sizes. As can be see from Figure 36, the performance of
Linux Fast-STREAMS STREAMS-based pipes is superior
across the entire range of write sizes. The performance of
Linux Fast-STREAMS is significantly greater (by a factor of
4 through 7) than Linux legacy pipes at smaller write sizes.

The performance boost experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due to
the write coallescing feature (hold feature) of the Stream
head combined with the fact that the fast-buffer sizes for
x86 64 is 128 bytes. The performance boost experienced
across the entire range is primarily due to the read-fill op-
tion combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

Delay. Figure 37 illustrates the average write delay for Linux
Fast-STREAMS and Linux legacy pipes across a range of
write sizes. Again the slope appears to be similar for both
implementations if a little bit erratic. The intercept for
Linux Fast-STREAMS is again much superior than Linux
legacy pipes.

Again, the delay drop experienced by Linux Fast-STREAMS
at write sizes beneath 128 is primariliy due to the write
coallescing feature (hold feature) of the Stream head com-
bined with the fact that the fast-buffer sizes for x86 64 is 128
bytes. The delay drop experienced across the entire range is

Streams
Linux

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 36: CentOS 5.2 on Daisy Performance

Streams
Linux

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 0 256 512 1024 2048 4096 8192

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 37: CentOS 5.2 on Daisy Delay

Streams
Linux

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 38: CentOS 5.2 on Daisy Throughput

Streams
Linux

 0%

100%

200%

300%

400%

500%

600%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 39: CentOS 5.2 on Daisy Comparison

11

primarily due to the read-fill option combined with full-sized
reads.

Note that it was not possible to get LiS running on this
kernel.

Throughput. Figure 38 illustrates the throughput experienced
by Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be seen from Figure 38, all im-
plementations exhibit strong power function characteristics,
indicating structure and robustness for each implementa-
tion.

Again, the throughput increase experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due to
the write coallescing feature (hold feature) of the Stream
head combined with the fact that the fast-buffer sizes for
x86 64 is 128 bytes. The throughput increase experienced
across the entire range is primarily due to the read-fill option
combined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

Improvement. Figure 39 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 100% increase in performance at large write sizes,
to a staggering 500% increase in performance at lower write
sizes.

Again, the improvements experienced by Linux Fast-
STREAMS at write sizes beneath 128 is primariliy due to
the write coallescing feature (hold feature) of the Stream
head combined with the fact that the fast-buffer sizes for
x86 64 is 128 bytes. The improvements experienced across
the entire range is primarily due to the read-fill option com-
bined with full-sized reads.

Note that it was not possible to get LiS running on this
kernel.

5.4 Mspiggy

Mspiggy is a 1.7Ghz Pentium IV (M-processor) uniprocessor
notebook (Toshiba Satellite 5100) with 1Gb of memory. Linux
distributions tested on this machine are as follows:

Distribution Kernel

SuSE 10.0 OSS 2.6.13-15-default

Note that this is the same distribution that was also tested on
Porky. The purpose of testing on this notebook is to rule out
the differences between machine architectures on the test results.
Tests performed on this machine are control tests.

5.4.1 SuSE 10.0 OSS

SuSE 10.0 OSS is the public release version of the SuSE/Novell
distribution. There have been two releases subsequent to this
one: the 10.1 and recent 10.2 releases. The SuSE 10 release
sports a 2.6.13 kernel and the 2.6.13-15-default kernel was the
tested kernel.

Performance. Figure 40 illustrates the performance of LiS,
Linux Fast-STREAMS and Linux legacy pipes across a
range of write sizes. As can be see from Figure 40, the
performance of LiS is dismal across the entire range of
write sizes. The performance of Linux Fast-STREAMS
STREAMS-based pipes, on the other hand, is superior
across the entire range of write sizes. Linux Fast-STREAMS
again performs a full order of magnitude better than LiS.

Delay. Figure 41 illustrates the average write delay for LiS,
Linux Fast-STREAMS and Linux legacy pipes across a

Streams
Linux
LiS

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

W
ri

te
 R

at
e

(W
ri

te
s

p
er

 S
ec

o
n

d
)

|

Write Size (Bytes)

Figure 40: SuSE 10.0 OSS on Mspiggy Performance

Streams
Linux
LiS

 0

 2e−06

 4e−06

 6e−06

 8e−06

 1e−05

 1.2e−05

 1.4e−05

 1.6e−05

 1.8e−05

 2e−05

 2.2e−05

 0 256 512 1024 2048 4096

D
el

ay
 (

S
ec

o
n

d
s

p
er

 W
ri

te
)

|

Write Size (Bytes)

Figure 41: SuSE 10.0 OSS on Mspiggy Delay

Streams
Linux
LiS

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

D
at

a
R

at
e

(B
it

s
p

er
 S

ec
o

n
d

)

|

Write Size (Bytes)

Figure 42: SuSE 10.0 OSS on Mspiggy Throughput

Streams
Linux
LiS

−100%

−50%

 0%

 50%

100%

150%

200%

250%

300%

350%

400%

450%

 1 2 4 8 16 32 64 128 256 512 1024 2048 4096

P
er

ce
n

ta
g

e
Im

p
ro

v
em

en
t

(o
v

er
 L

in
u

x
)

|

Write Size (Bytes)

Figure 43: SuSE 10.0 OSS on Mspiggy Comparison

12

range of write sizes. The slope of the delay curves is, again,
similar, but the intercept for Linux Fast-STREAMS is far
superior.

Throughput. Figure 42 illustrates the throughput experienced
by LiS, Linux Fast-STREAMS and Linux legacy pipes across
a range of write sizes. As can be seen from Figure 42, all
implementations exhibit strong power function characteris-
tics, indicating structure and robustness for each implemen-
tation. Linux Fast-STREAMS again begins to saturate the
memory bus at 10Gbps.

Improvement. Figure 43 illustrates the improvement over
Linux legacy pipes of Linux Fast-STREAMS STREAMS-
based pipes. The improvement of Linux Fast-STREAMS
over Linux legacy pipes is significant: improvements range
from a 100% increase in performance at large write sizes,
to a staggering 400% increase in performance at lower write
sizes.

6 Analysis

The results across the various distributions and machines tested
are consistent enough to draw some conclusions from the test
results.

6.1 Discussion

The test results reveal that the maximum throughput perfor-
mance, as tested by the perftest program, of STREAMS-based
pipes (as implemented by Linux Fast-STREAMS) is remarkably
superior to that of legacy Linux pipes, regardless of write or read
sizes. In fact, STREAMS-based pipe performance at smaller
write/read sizes is significantly greater (as much as 200-400%)
than that of legacy pipes. The performance of LiS is dismal (ap-
prox. 75% decrease) compared to legacy Linux pipes.

Looking at only the legacy Linux and Linux Fast-STREAMS
implementations, the difference can be described by analyzing
the implementations.

Write side processing. Linux legacy pipes use a simple
method on the write side of the pipe. The pipe copies bytes
from the user into a preallocated page, by pushing a tail pointer.
If there is a sleeping reader process, the process is awoken. If
there is no more room in the buffer, the write process sleeps or
fails.

STREAMS, on the other hand, uses full flow control. On the
write side of the STREAMS-based pipe, the Stream head allo-
cates a message block and copies the bytes from the user to the
message block and places the message block onto the Stream.
This results in placing the message on the opposite Stream head.
If a reader is sleeping on the opposite Stream head, the Stream
head ’s read queue service procedure is scheduled. If the Stream
is flow controlled, the writing process sleeps or fails.

STREAMS has the feature that when a reader finds insufficient
bytes available to satisfy the read, it issues an M READ message
downstream requesting a specific number of bytes. When the
writing Stream head receives this message, it attempts to satisfy
the full read request before sending data downstream.

Linux Fast-STREAMS also has the feature that when flow
control is exerted, it saves the message buffer and a subsequent
write of the same size is added to the same buffer.

Read side processing. On the read side of the legacy pipe,
bytes are copied from the preallocated page buffer to the user,
pulling a head pointer. If there are no bytes available to be read
in the buffer, the reading process sleeps or fails. When bytes
have been read from the buffer and a process is sleeping waiting
to write, the sleeping process is awoken.

STREAMS again uses full flow control. On the read side of the
STREAMS-based pipe, messages are removed from the Stream
head read queue, copied to the user, and then the message is ei-
ther freed (when all the bytes contained are consumed) or placed
back on the Stream head read queue. If the read queue was pre-
viously full and falls beneath the low water mark for the read
queue, the Stream is back-enabled. Back-enabling results in the
service procedure of the write side queue of the other Stream head
to be scheduled for service. If there are no bytes available to be
read, the reading process sleeps or fails.

STREAMS has the additional feature that if there are no bytes
to be read, it can issue an M READ message downstream requesting
the number of bytes that were issued to the read(2) system call.

Buffering. There are two primary differences in the buffering
approaches used by legacy and STREAMS-based pipes:

1. Legacy pipes use preallocated pinned kernel pages to store
data using a simply head and tail pointer approach.

2. STREAMS-based pipes use full flow control with STREAMS
message blocks and message queues.

One would expect that the STREAMS-based approach would
present significant overheads in comparison to the legacy ap-
proach; however, the lack of flow control in the Linux approach
is problematic.

Scheduling. Legacy pipes schedule by waking a reading process
whenever data is available in the buffer to be read, and waking
a writing process whenever there is room available in the buffer
to write. While accomplishing buffering, this does not provide
flow control or scheduling. By not providing even the hysteresis
afforded by Sockets, the write and read side thrash the scheduler
as bytes are written to and removed from the pipe.

STREAMS-based pipes, on the other hand, use the scheduling
mechanisms of STREAMS. When messages are written to the
reading Stream head and a reader is sleeping, the service proce-
dure for the reading Stream head ’s read queue is scheduled for
later execution. When the STREAMS scheduler later runs, the
reading process is awoken. When message are read from the read-
ing Stream head read queue and the queue was previously flow
controlled, and the byte count falls below the low water mark
defined for the queue, the writing Stream head write queue ser-
vice procedure is scheduled. Once the STREAMS scheduler later
runs, the writing process is awoken.

Linux Fast-STREAMS is designed to run tasks queued to the
STREAMS scheduler on the same processor as the queueing pro-
cess or task. This avoids unnecessary context switches.

The STREAMS-based pipe approach results in fewer wakeup
events being generated. Because there are fewer wakeup events,
there are fewer context switches. The reading process is per-
mitted to consume more messages before the writing process is
awoken; and the writing process is permitted to write more mes-
sages before the reading process is awoken.

Result. The result of the differences between the legacy and
the STREAMS based approach is that fewer context switches re-
sult: writing processes are allowed to write more messages before
a blocked reader is awoken and the reading process is allowed
to read more messages before a blocked writer is awoken. This
results in greater code path and data cache efficiency and signif-
icantly less scheduler thrashing between the reading and writing
process.

The increased performance of the STREAMS-based pipes can
be explained as follows:

• The STREAMS message coalescing features allows the com-
plexity of the write side process to approach that of the

13

legacy approach. This feature provides a boost to perfor-
mance at message sizes smaller than a FASTBUF. The size of
a FASTBUF on 32-bit systems is 64 bytes; on 64-bit systems,
128 bytes. (However, this STREAMS feature is not sufficient
to explain the dramatic performance gains, as close to the
same performance is exhibited with the feature disabled.)

• The STREAMS read notification feature allows the write
side to exploit efficiencies from the knowledge of the amount
of data that was requested by the read side. (However, this
STREAMS feature is also not sufficient to explain the per-
formance gains, as close to the same performance is exhib-
ited with the feature disabled.)

• The STREAMS read fill mode feature permits the read side
to block until the full read request is satisfied, regardless of
the O NONBLOCK flags setting associated with the read side
of the pipe. (Again, this STREAMS feature is not suffi-
cient to explain the performance gains, as close to the same
performance is exhibited with the feature disabled.)

• The STREAMS flow control and scheduling mechanisms
permits the read side to read more messages between wakeup
events; and also permits the write side to write more mes-
sages between wakeup events. This results in superior code
and data caching efficiencies and a greatly reduced number
of context switches. This is the only difference that explains
the full performance increase in STREAMS-based pipes over
legacy pipes.

7 Conclusions

These experiments have shown that the Linux Fast-STREAMS
implementation of STREAMS-based pipes outperforms the
legacy Linux pipe implementation by a significant amount (up
to a factor of 5) and outperform the LiS implementation by a
staggering amount (up to a factor of 25).

The Linux Fast-STREAMS implementation of
STREAMS-based pipes is superior by a significant
factor across all systems and kernels tested.

While it can be said that all of the preconceptions regard-
ing STREAMS and STREAMS-based pipes are applicable to the
under-performing LiS, and may very well be applicable to histor-
ical implementations of STREAMS, these preconceptions with
regard to STREAMS and STREAMS-based pipes are dispelled
for the high-performance Linux Fast-STREAMS by these test
results.

• STREAMS is fast.

Contrary to the preconception that STREAMS must be
slower because it is more complex, in fact the reverse has
been shown to be true for Linux Fast-STREAMS in these
experiments. The STREAMS flow control and scheduling
mechanisms serve to adapt well and increase both code and
data cache as well as scheduler efficiency.

• STREAMS is more flexible and more efficient.

Contrary to the preconception that STREAMS trades flexi-
bility for efficiency (that is, that STREAMS is somehow less
efficient because it is more flexible), in fact has shown to be
untrue for Linux Fast-STREAMS, which is both more flexible
and more efficient. Indeed, the performance gains achieved
by STREAMS appear to derive from its more sophisticated
queueing, scheduling and flow control model. (Note that this
is in fitting with the statements made about 4.2BSD pipes
being implemented with UNIX domain sockets for ”perfor-
mance reasons” [MBKQ97].)

• Linux Fast-STREAMS is superior at exploiting parallelisms
on SMP.

Contrary to the preconception that STREAMS must be
slower due to complex locking and synchronization mech-
anisms, Linux Fast-STREAMS performed as well on SMP
(hyperthreaded) machines as on UP machines and strongly
outperformed legacy Linux pipes with 100% improvements
at all write sizes and a staggering 500% at smaller write
sizes.

• STREAMS-based pipes are fast.

Contrary to the preconception that STREAMS-based pipes
must be slower because STREAMS-based pipes provide such
a rich set of features as well as providing full duplex op-
eration where legacy pipes only unidirectional operation,
the reverse has been shown in these experiments for Linux
Fast-STREAMS. By utilizing STREAMS flow control and
scheduling, STREAMS-based pipes indeed perform better
than legacy pipes.

• STREAMS-based pipes are neither unnecessarily complex
nor cumbersome.

Contrary to the preconception that STREAMS-based pipes
must be poorer due to their increased implementation com-
plexity, the reverse has shown to be true in these experi-
ments for Linux Fast-STREAMS. Also, the fact that legacy,
STREAMS and 4.2BSD pipes conform to the same standard
(POSIX), means that they are no more cumbersome from
a programming perspective. Indeed a POSIX conforming
application will not know the difference between the imple-
mentation (with the exception that superior performance
will be experienced on STREAMS-based pipes).

• LiS performs poorly.

Despite claiming to be an adequate implementation of SVR4
STREAMS, LiS performance is dismal enough to make it
unusable. Due to conformance and implementation errors,
LiS was already deprecated by Linux Fast-STREAMS, and
these tests exemplify why a replacement for LiS was nec-
essary and why support for LiS was abandoned by the
OpenSS7 Project [SS7]. LiS pipe performance tested about
half that of legacy Linux pipes and a full order of magnitude
slower than Linux Fast-STREAMS.

8 Future Work

There are two future work items that immediately come to mind:

1. It is fairly straightforward to replace the pipe implemen-
tation of an application that uses shared libraries from
underneath it using preloaded libraries. The Linux Fast-
STREAMS libstreams.so library can be preloaded, replac-
ing the pipe(2) library call with the STREAMS-based pipe
equivalent. A suitable application that uses pipes exten-
sively could be benchmarked both on legacy Linux pipes
and STREAMS-based pipes to determine the efficiencies
achieved over a less narrowly defined workload.

2. Because STREAMS-based pipes exhibit superior perfor-
mance in these respects, it can be expected that STREAMS
pseudo-terminals will also exhibit superior performance
over the legacy Linux pseudo-terminal implementation.
STREAMS pseudo-terminals utilize the STREAMS mech-
anisms for flow control and scheduling, whereas the Linux
pseudo-terminal implementation uses the over-simplified ap-
proach taken by legacy pipes.

9 Related Work

A separate paper comparing a TPI STREAMS implementation
of UDP with the Linux BSD Sockets implementation has also

14

been prepared. That paper also shows significant performance
improvements for STREAMS attributable to the similar causes.

References

[GC94] Berny Goodheart and James Cox. The magic gar-
den explained: the internals of UNIX System V Re-
lease 4, an open systems design / Berny Goodheart
& James Cox. Prentice Hall, Australia, 1994. ISBN
0-13-098138-9.

[LfS] Linux Fast-STREAMS – A High-Performance SVR
4.2 MP STREAMS Implementation for Linux.
http://www.openss7.org/download.html.

[LiS] Linux STREAMS (LiS). http://www.openss7.org/-
download.html.

[LML] Linux Kernel Mailing List – Frequently Asked
Questions. http://www.kernel.org/pub/linux/docs/-
lkml/#s9-9.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic, Michael J.
Karels, and John S. Quaterman. The design and
implementation of the 4.4BSD operating system.
Addison-Wesley, third edition, November 1997. ISBN
0-201-54979-4.

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Journal,
63(8):1897–1910, October 1984. Part 2.

[SS7] The OpenSS7 Project. http://www.openss7.org/.

[Ste97] W. Richard Stevens. Advanced Programming in the
UNIX Environment. Addison–Wesley, Reading, Mas-
sachusetts, fifteenth edition, December 1997. ISBN
0-201-56317-7.

15

A Performance Testing Script

A performance testing script (perftest sctipt) was used to ob-
tain repeatable results. The script was executed as:

$#> ./perftest_script -a -S10 --hiwat=$((1<<16)) --lowat=$((1<<13))

The script is as follows:

#!/bin/bash

set -x

interval=5

testtime=2

command=‘echo $0 | sed -e ’s,.*/,,’‘

perftestn=

perftest=

if [-x ‘pwd‘/perftest] ; then

perftest=‘pwd‘/perftest

elif [-x /usr/lib/streams/perftest] ; then

perftest=/usr/lib/streams/perftest

elif [-x /usr/libexec/streams/perftest] ; then

perftest=/usr/libexec/streams/perftest

elif [-x /usr/lib/LiS/perftest] ; then

perftest=/usr/lib/LiS/perftest

elif [-x /usr/libexec/LiS/perftest] ; then

perftest=/usr/libexec/LiS/perftest

fi

if [-x ‘pwd‘/perftestn] ; then

perftestn=‘pwd‘/perftestn

elif [-x /usr/lib/streams/perftestn] ; then

perftestn=/usr/lib/streams/perftestn

elif [-x /usr/libexec/streams/perftestn] ; then

perftestn=/usr/libexec/streams/perftestn

elif [-x /usr/lib/LiS/perftestn] ; then

perftestn=/usr/lib/LiS/perftestn

elif [-x /usr/libexec/LiS/perftestn] ; then

perftestn=/usr/libexec/LiS/perftestn

fi

[-n "$perftestn"] || [-n "$perftest"] || exit 1

scls=

if [-x ‘pwd‘/scls] ; then

scls=‘pwd‘/scls

elif [-x /usr/sbin/scls] ; then

scls=/usr/sbin/scls

fi

(

set -x

[-n "$scls"] && $scls -a -c -r pipe pipemod

for size in 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

do

[-n "$perftest"] && $perftest -q \

-r -t $testtime -i $interval -m nullmod -p 0 -s $size ${1+$@}

[-n "$perftestn"] && $perftestn -q \

-r -t $testtime -i $interval -m nullmod -p 0 -s $size ${1+$@}

[-n "$scls"] && $scls -a -c -r pipe pipemod srvmod nullmod

done

) 2>&1 | tee ‘hostname‘.$command.‘date -uIseconds‘.log

B Raw Data

Following are the raw data points captured using the
perftest script benchmarking script:

Table 1 lists the raw data from the perftest program that was
used in preparing graphs for FC6 (i386) on Porky.

Table 2 lists the raw data from the perftest program that was
used in preparing graphs for CentOS 4 on Porky.

Table 3 lists the raw data from the perftest program that was
used in preparing graphs for SuSE OSS 10 on Porky.

Table 4 lists the raw data from the perftest program that was
used in preparing graphs for Ubuntu 6.10 on Porky.

Table 5 lists the raw data from the perftest program that was
used in preparing graphs for RedHat 7.2 on Pumbah.

Table 6 lists the raw data from perftest, used in preparing
graphs for Fedora Core 6 (x86 64) HT on Daisy.

Table 7 lists the raw data from perftest, used in preparing
graphs for CentOS 5 (x86 64) HT on Daisy.

Table 8 lists the raw data from perftest, used in preparing
graphs for CentOS 5.2 (x86 64) HT on Daisy.

Table 9 lists the raw data from perftest, used in preparing
graphs for SuSE 10.0 OSS on Mspiggy.

Size LiS STREAMS Linux

1 37188 344307 116966
2 37284 351804 117820
4 37179 347164 116381
8 37030 338055 117887

16 37225 329919 117822
32 36999 317133 116595
64 36809 302554 116686

128 35127 283041 117284
256 34828 271630 114657
512 34807 263021 114821

1024 34607 247080 111825
2048 34204 214279 106369
4096 33139 176842 100510

Table 1: Raw data for Fedora Core 6 on Porky

Size LiS STREAMS Linux

1 53119 479434 132195
2 53066 505597 132293
4 53289 501230 131201
8 53216 475951 132182

16 53254 464013 131688
32 52952 438519 131697
64 52499 407751 129409

128 50065 379356 130188
256 49348 372393 126861
512 49297 360773 125318

1024 48598 336727 123318
2048 48274 290614 117809
4096 47004 227778 110875

Table 2: Raw data for CentOS 4.0 on Porky

Size LiS STREAMS Linux

1 53119 961820 168049
2 53066 933673 176267
4 53289 942865 172912
8 53216 837034 168898

16 53254 827399 166427
32 52952 740263 172185
64 52499 659878 169231

128 50065 582512 174005
256 49348 580011 166646
512 49297 547149 167829

1024 48598 512452 152447
2048 48274 413858 154813
4096 47004 307174 138756

Table 3: Raw data for SuSE 10.0 OSS on Porky

Size LiS STREAMS Linux

1 53119 430184 144855
2 53066 433274 143835
4 53289 425094 145879
8 53216 407647 143399

16 53254 394244 141268
32 52952 372063 144056
64 52499 354598 139854

128 50065 339602 141793
256 49348 324405 140269
512 49297 311610 134445

1024 48598 292892 136385
2048 48274 255374 127651
4096 47004 202755 116218

Table 4: Raw data for Ubuntu 6.10 on Porky

16

Size LiS STREAMS Linux

1 53160 497439 209223
2 53440 499519 199566
4 53252 496272 187440
8 53097 489615 188829

16 53179 485036 182148
32 52926 469102 185174
64 53535 457550 182383

128 49452 416632 178087
256 49584 396356 177204
512 49169 381209 165517

1024 48992 355111 173222
2048 47970 303334 163572
4096 46598 240386 136522

Table 5: Raw data for RedHat 7.2 on Pumbah

Size LiS STREAMS Linux

1 37188 334896 146553
2 37284 334796 122048
4 37179 329476 140025
8 37030 341612 160396

16 37225 333520 125678
32 36999 325169 125124
64 36809 302603 109340

128 35127 278490 128133
256 34828 247379 122689
512 34807 235190 104739

1024 34607 215718 83447
2048 34204 187982 81301
4096 33139 150392 77118

Table 6: Raw data for Fedora Core 6 on Daisy

Size STREAMS Linux

1 232029 262762
2 221413 224493
4 217800 294765
8 206325 284109

16 194132 252365
32 200675 347247
64 198463 290958

128 210551 280954
256 168482 270703
512 164051 198930

1024 154924 197374
2048 138744 101038
4096 116291 70827

Table 7: Raw data for CentOS 5 on Daisy

Size STREAMS Linux

1 693675 133714
2 677583 192987
4 652141 137415
8 617148 153168

16 544888 127430
32 430115 193361
64 322424 118036

128 221081 143728
256 187469 110754
512 185642 102351

1024 174350 103238
2048 155567 106183
4096 130076 77321
8192 68071 62987

Table 8: Raw data for CentOS 5.2 on Daisy

Size LiS STREAMS Linux

1 690896 114253
2 662870 107000
4 639931 128916
8 596668 114321

16 520846 124913
32 427005 132284
64 321028 105085

128 212760 103989
256 177236 71573
512 173048 58217

1024 163703 66249
2048 154194 64369
4096 134026 63115
8192 66860 55217

Table 9: Raw data for SuSE 10.0 OSS on Mspiggy

17

