
Implementing POSIX Sockets for Linux Fast-STREAMS

Design for Linux

Brian F. G. Bidulock∗

OpenSS7 Corporation

June 16, 2007

Abstract

1 Background

UNIX networking has a rich history. The TCP/IP protocol
suite was first implemented by BBN using Sockets under a
DARPA research project on 4.1aBSD and then incorporated
by the CSRG into 4.2BSD [MBKQ97]. Lachmann and As-
sociates (Legent) subsequently implemented one of the first
TCP/IP protocol suite based on the Transport Layer Inter-
face (TLI) [TLI92] and STREAMS [GC94]. Two other pre-
dominant TCP/IP implementations on STREAMS surfaced
at about the same time: Wollongong and Mentat.

1.1 STREAMS

STREAMS is a facility first presented in a paper by Den-
nis M. Ritchie in 1984 [Rit84], originally implemented on
4.1BSD and later part of the Bell Laboratories Eighth Edi-
tion UNIX, incorporated into UNIX System V Release 3
and enhanced in UNIX System V Release 4 and further
in UNIX System V Release 4.2. STREAMS was used in
SVR4 for terminal input-output, pseudo-terminals, pipes,
named pipes (FIFOs), interprocess communication and net-
working. STREAMS was used in SVR3 for networking (in
the NSU package). Since its release in System V Release
3, STREAMS has been implemented across a wide range
of UNIX, UNIX-like and UNIX-based systems, making its
implementation and use an ipso facto standard.

STREAMS is a facility that allows for a reconfigurable
full duplex communications path, Stream, between a user
process and a driver in the kernel. Kernel protocol modules
can be pushed onto and popped from the Stream between
the user process and driver. The Stream can be reconfigured
in this way by a user process. The user process, neighbour-
ing protocol modules and the driver communicate with each
other using a message passing scheme. This permits a loose
coupling between protocol modules, drivers and user pro-
cesses, allowing a third-party and loadable kernel module
approach to be taken toward the provisioning of protocol
modules on platforms supporting STREAMS.

On UNIX System V Release 4.2, STREAMS was used
for terminal input-output, pipes, FIFOs (named pipes),
and network communications. Modern UNIX, UNIX-like
and UNIX-based systems providing STREAMS normally
support some degree of network communications using
STREAMS; however, many do not support STREAMS-
based pipe and FIFOs1 or terminal input-output2 without
system reconfiguration.

UNIX System V Release 4.2 supported four Application
Programming Interfaces (APIs) for accessing the network
communications facilities of the kernel:

Transport Layer Interface (TLI). TLI is an acronym for the
Transport Layer Interface [TLI92]. The TLI was the
non-standard interface provided by SVR3 and SVR4,
later standardized by X/Open as the XTI described be-
low. This interface operated differently than the XTI
in subtle ways, and is now deprecated.

X/Open Transport Interface (XTI). XTI is an acronym for
the X/Open Transport Interface [XTI99]. The X/Open
Transport Interface is a standardization of the UNIX
System V Release 4, Transport Layer Interface. The
interface consists of an Application Programming Inter-
face implemented as a shared object library. The shared
object library communicates with a transport provider
Stream using a service primitive interface called the
Transport Provider Interface[TPI99].

While XTI was implemented directly over STREAMS
devices supporting the Transport Provider Interface
(TPI) [TPI99] under SVR4, several non-traditional ap-
proaches exist in implementation:

Berkeley Sockets. Sockets uses the BSD interface that was
developed by BBN for the TCP/IP protocol suite under
DARPA contract on 4.1aBSD and released in 4.2BSD.
BSD Sockets provides a set of primary API functions
that are typically implemented as system calls. The
BSD Sockets interface is non-standard, operated differ-
ently from the POSIX interface in subtle ways, and is
now deprecated in favour of the POSIX/SUS standard
Sockets interface.

POSIX Sockets. Sockets were standardized by X/Open,
later the OpenGroup,3 and IEEE in the POSIX stan-
dardization process. They appear in XNS 5.2 [XNS99],
SUSv1 [SUS95], SUSv2 [SUS98] and SUSv3 [SUS03].
POSIX/SUS Sockets is now the common application
environment for accessing networking, deprecating the
XTI for TCP/IP networking applications.

∗bidulock@openss7.org

1. AIX, for example.

2. HP-UX, for example.

3. http://www.opengroup.org/

1



One systems supporting STREAMS, but not traditionally
supporting Sockets (such as SVR4), there are a number of
approaches toward supporting BSD and POSIX Sockets:

Compatibility Library. Under this approach, the oldest of
approaches for STREAMS, a compatibility library
(libsocket.o) contains the socket calls as library func-
tions that internally invoke the TLI or TPI interface
to an underlying STREAMS transport provider. This
is the approach originally taken by SVR4 [GC94], but
this approach has subsequently been abandonned due
to the difficulties regarding fork(2) and fundamental in-
compatibilities deriving from a library only approach.

Library and Cooperating STREAMS Module. Under this
approach, a cooperating module (sockmod) is pushed
on a Transport Provider Interface (TPI) stream. The
library (socklib) and cooperating module (sockmod)
provide the BBN or POSIX Socket API [VS90]
[Mar01]. This is the intermediate implementation
approach taken by SVR4 and earlier releases of Solaris.

Library and System Calls. Under this approach, the BSD or
POSIX Sockets API is implemented as system calls with
the sole exception of the socket(3) call. The underly-
ing transport provider is still a TPI-based STREAMS
transport provider, it is just that system calls instead
of library calls are used to implement the interface
[Mar01]. This is another intermediate implementation
approach taken by later releases of Solaris.

System Calls. Under this approach, even the socket(3)
call is moved into the kernel. Conversion between
POSIX/BSD Sockets and TPI service primitives is per-
formed completely within the kernel. The sock2path(5)
configuration file is used to configure the mapping be-
tween STREAMS devices and socket types, domains
and protocols [Mar01].

1.2 Sockets

Sockets were originally developed as part of the BBN
DARPA contract for providing TCP/IP networking for
4BSD UNIX. The TCP/IP networking stack was first imple-
mented on 4.1aBSD and included in 4.2BSD by the CSRG
[MBKQ97]. The Sockets interface had the objective of being
a general purpose, network agnostic, interprocess commu-
nications system. The first networking components imple-
mented using Sockets were TCP/IP (released in 4.2BSD),
XNS (released in 4.3BSD) and ISO (released in 4.4BSD).

Although the networking subsystems for BSD Sockets
were intended to be general purpose, only the TCP/IP net-
working components have received wide use.

Systems that take the BSD approach to networking sel-
dom support STREAMS.4 For systems traditionally sup-
porting Sockets and then retrofitted to support the XTI
interface, there is one approach toward supporting XTI
without retrofitting the entire networking stack to support
STREAMS:5

XTI Compatibility Library. Several implementations of XTI
on UNIX utilize the concept of an XTI compatibility li-
brary.6 This is purely a shared object library approach

to providing XTI. Under this approach it is possible
to use the XTI application programming interface, but
it is not possible to utilize any of the STREAMS ca-
pabilities of an underlying Transport Provider Interface
(TPI) stream. This approach is, unfortunately, also not
ABI compliant to the SVID.

TPI over Sockets. An alternate approach taken by the
Linux iBCS package was to provide a pseudo-transport
provider using a legacy character device to present the
appearance of a STREAMS transport provider. While
being ABI compliant to SVID, under this approach it
is still not possible to utilize any of the STREAMS ca-
pabilities of an underlying Transport Provider Interface
(TPI) stream.

XTI over Sockets. Several implementations of XTI on BSD-
style UNIX utilize the concept of XTI over Sockets
(or TPI over Sockets). Following this approach, a
STREAMS pseudo-device driver is provided that hooks
directly into internal socket system calls to implement
the driver, and yet the networking stack remains funda-
mentally BSD in style. This approach is ABI compliant
to the SVID and also allows the STREAMS capabili-
ties of the resulting Transport Provider Interface (TPI)
to be used (such as pushing and popping modules).
This approach requires a rather complete STREAMS
implementation, however, it does not require replace-
ment of the BSD-style networking stack with an SVR4
style stack.

1.3 Standardization

It is interesting that both Sockets and STREAMS were im-
plemented on the same operating system base (4.1BSD) at
about the same time. Also, Dennis Ritchie implemented
STREAMS and was a significant contributor to the initial
BSD releases. BBN implemented the TCP/IP networking
stack on 4.1aBSD using sockets, both released by the CSRG
in 4.2BSD. At about the same time STREAMS went into
System V Release 3 and the Network Services Utility (NSU)
provided the first TLI implementations of TCP/IP network-
ing for TLI. Perhaps it is not surprising that both interfaces
provide similar functions:

4. Perhaps an exception is early versions of Digital UNIX.

5. This is the approach initially taken by Digital UNIX.

6. One was even available for Linux at one point.

2



TLI Sockets
t open() socket()
t bind() bind()
t listen() listen()
t connect() connect()
t rcvconnect() select()
t accept() accept()
t unbind() bind()
t close() close()
t snddis() close()
t sndrel() shutdown()
t sndreldata()
t rcvrel() select()
t rcvreldata()
t rcvuderr()
t snd() send()
t sndv() writev()
t sndudata() sendto()
t sndudata() sendmsg()
t rcv() recv()
t rcvv() readv()
t rcvudata() recvfrom()
t rcvudata() recvmsg()
t optmgmt() getsockopt()
t optmgmt() setsockopt()

During the POSIX standarization process, networking and
the Sockets interface were given special treatment to ensure
that both the BSD and STREAMS networking approaches
were compatible in the common application environment.7

POSIX has standardized both the XTI and Sockets pro-
grammatic interfaces to networking. STREAMS network-
ing has been POSIX compliant for many years, BSD Sockets,
POSIX Sockets, TLI and XTI interfaces, and were compliant
in the SVR4 release. The STREAMS networking provided
by Linux Fast-STREAMS package provides POSIX compli-
ant networking. Therefore, any application using a Socket
or Stream in a POSIX compliant manner will be compatible
with both BSD and STREAMS networking.

1.4 Linux

2 Objective

3 Description

3.1 STREAMS Networking

Figure 1 illustrates the organization of the classical
STREAMS networking stack.

User to Transport Interface. The interface between the
Stream head and the uppermost module (transport) is
a well-defined Transport Provider Interface (TPI). This
is primarily a service primitive (message passing) inter-
face.

Transport to Network Interface. The interface be-
tween the transport provider and the network provider
is a well-defined Network Provider Interface (NPI).
This is primarily a service primitive (message passing)
interface.

Network to Data Link Interface. The interface be-
tween the network provider and the data link provider

TCP UDP SCTP

IP

Stream Head

Transport Provider

Network Provider

Data Link Provider

Figure 1: STREAMS Networking

is a well-defined Data Link Provider Interface (DLPI).
This is primarily a service primitive (message passing)
interface.

3.2 BSD Networking

Figure 2 illustrates the organization of the classical BSD
networking stack.

User to Transport Interface. The interface between the
Socket layer and the uppermost (transport) protocol
layer is a well-defined BSD socket-to-protocol interface.
This is primarily a function pointer call interface.

Transport to Network Interface. The interface be-
tween protocol layers (transport and network) is a
well-defined BSD protocol-to-protocol interface. This
is primarily a function pointer call interface.

Network to Data Link Interface. The interface be-
tween the protocol layer and the device layer (network
and interface) is a well-defined BSD protocol-to-iface
interface. This is primarily a function pointer call
interface.

7. For example, when a transport connection indication has been re-
ceived with t listen(3) the transport connection may have already been
established before t accept(3) or t snddis(3) are issued. This permits
t listen(3) to be implemented using accept(3) and also permits the
BSD networking stack to be used (a TPI implementation is capable
of deferring accepting a connection at the protocol level and either ac-
cepting the connection (T CONN RES) or refusing the connection attempt
(T DISCON REQ)). As another example, binding a socket with bind(3) to
an address containing an address family of AF UNSPEC has the same
effect as t unbind(3).

3



Socket Layer

Protocol Layer

Protocol Layer

Interface Layer

TCP UDP SCTP

IP

Figure 2: BSD Networking

3.3 Hybrid Approaches

3.4 Linux Networking

3.5 Linux Fast-STREAMS Networking

4 Method

4.1 Compatibility Library

XTI Compatibility Library

This approach builds a library of socket functions that are
implemented internally as calls to the XTI library. To main-
tain compatibilty with existing Linux sockets, the library
distinguishes between XTI streams and native sockets. Un-
derlying system calls (or input-output controls) are utilized
on native sockets.

TPI Compatibility Library

This approach builds a library of socket functions that are
implemented internally as service primitives passed to the
TPI transport provider. To maintain compatibilty with ex-
isting Linux sockets, the library distinguishes between TPI
streams and native sockets. Underlying system calls (or
input-output controls) are utilized on native sockets.

4.2 Library and Cooperating Module

These approaches all invole pushing a module, named
sockmod onto an open transport provider stream as illus-
trated in Figure 3.

Sockmod Approach 1

This approach pushes the sockmod STREAMS module onto
the transport provider STREAM. A library of socket func-
tions are implemented internally as calls to the cooperat-
ing module [VS90]. To maintain compatibilty with exist-
ing Linux sockets, the library distinguishes between Sock-

Stream Head

sockmod

Transport Provider

WQ

WQ

WQ

RQ

RQ

RQ

socklib

Figure 3: Socket Module

mod streams and native sockets. Underlying system calls
(or input-output controls) are utilized on native sockets.

This is the approach of earlier Solaris releases [VS90].

Sockmod Approach 2

This approach pushes the sockmod STREAMS module onto
the transport provider STREAM. A library of socket func-
tions are implemented internally as calls to the cooperating
module. Where this approach differs from the Sockmod ap-
proach above is that system calls are implemented directly as
input-output controls issued to the socket module to emulate
system calls. To maintain compatibilty with existing Linux
sockets, the library does not need to distinguish between
Sockmod streams and native sockets as both support the
same set of underlying input-output controls (i.e. socksys
input-output control calls available for iBCS compatiblity).
Sockets opened in this fashion appear as STREAMS devices.

This is an intermediate approach that takes advantage
of the socketsys input-output control calls available in the
Linux kernel. The library can be made compatible with
native sockets by passing the socket call to the normal glibc
socket(3) function whenever the domain, type and protocol
are not in the table.

4.3 Library and System Calls

These approaches all either transforms the inode associated
with the Stream head into a socket, or attach a Stream head
onto a socket. The objective in these approaches is to per-
haps alter the socket(3) system call into a more specialized
library call, but to keep all other socket system calls consis-
tent with Linux and no need of replacing the other Linux
socket system calls. This approach to system calls is prob-

4



lematic from the standpoint that both a struct socket and
struct sock structure must be allocated. Linux socket calls
expect both structures to be present and complete.

Perhaps the most straighforward way of doing this is to
create both a socket and sock structure in the regular way
for the Linux socket layer and provide a more specialized
Stream head that is part of (or associated with) the sock
structure.

file inode

socket sock

stdata

WQ RQ

WQ RQ

Stream Head

queue pair

Driver

queue pair

q_next q_next

sd_rqsd_wq

sk

generic_ip

f_inode

f_private

sd_inode sd_sock

Figure 4: Socket Structures

Figure 4 illustrates the hybrid Stream head/Socket struc-
ture arrangement. Some of the particulars of the structures
vary from kernel to kernel. For example, many kernels com-
bine the inode and socket structures into a single struc-
ture. Some kernels will also combine the sock and stdata
structures into a single structure. Other kernels separate
these structures and provide pointers between the two. Also,
Linux Fast-STREAMS currently allocates the stdata struc-
ture and its associated read and write queues as a single
structure.

Sockmod Approach 3

This approach pushes the sockmod STREAMS module onto
the transport provider stream. The sockmod module trans-
forms the Stream head into a socket (from the viewpoint of
the kernel), by establishing the arrangement shown in Figure
4.

A library implements the socket(3) system call as a li-
brary function to create sockets in this fashion. The library
looks up the socket domain, type and protocol in a table
and determines which transport provider device to open and
then pushes the sockmod module onto the transport provider
stream to transform it into a socket (from the viewpoint of
the kernel). All other socket calls are performed as native
sockets system calls.

This approach requires a thin library that implements the
socket(3) system call. The library can be made compatible
with native sockets by passing the socket call to the nor-
mal glibc socket(3) function whenever the domain, type and
protocol are not in the table. This is the approach of later
Solaris releases [Mar01].

Socksys Approach

This approach uses the soconfig(8) utility and sock2path(5)
file (or the initsock(8) utility and the netconfig(5) file)
to configure the system at boot time. The utility opens
the /dev/socksys driver (or an anonymous device such as
/dev/ticlts) and configures the system using input-output
controls. Entries are added to an internal table containing
socket domain, type, protocol and device path. The driver
stores internally the identity of the transport provider (i.e.
major device number).

The approach uses a thin library that re-implements the
socket(3) system call. When the socket(3) system call
is called, the library opens the /dev/socksys driver and
issues an input-output control passing the arguments to
the socket(3) system call (domain, type, protocol). The
/dev/socksys driver creates a socket inode and a Stream
head according to Figure 4, and attaches the driver of the
type included in the configuration table. This STREAMS
file is attached to an available file descriptor, which is re-
turned from the input-output control. This file descriptor
appears as a real socket to the reset of the system.

Another approach is to have the /dev/socksys driver de-
tach its own driver queue pair and susbstitute the transport
driver. The /dev/socksys driver also transforms it Stream
head into a socket per Figure 4 and returns its own file de-
scriptor in the from the input-output control call.

All other socket calls are compatible with kernel system
calls. If the domain, type and protocol are not present in
the configuration table, the input-output control call can be
passed to the sys socket() call inside the kernel and a native
socket of the requested type returned. The /dev/socksys
driver itself implements the socket calls and converts them to
TPI and other calls to the driver via the associated Stream
head.

This approach requires only a thin library that implements
the socket(3) system call and that is completely compatible
with native sockets.

4.4 System Calls

This approach uses the soconfig(8) utility and sock2path(5)
file (or the initsock(8) utility and the netconfig(5) file)
to configure the system at boot time. The utility opens
the /dev/socksys driver (or an anonymous device such as
/dev/ticlts) and configures the system using input-output
controls. Entries are added to a table containing socket do-
main, type, protocol and device path. The driver register a
socket of the corresponding domain, type and protocol with
the Linux socket system. To allow conflicting domains, if
an existing domain is registered, a hack is used (bit added
to the domain, e.g. AF INET | AF HACK). The driver stores
internally the identity of the transport provider (i.e. ma-
jor device number). When the Linux kernel sys socket()
system call is invoked, a socket structure is established and
passed to the registered create function. The create function

5



uses the socket domain, type and protocol to determine the
STREAMS device to create. A Stream head is created and
the transport provider driver attached in the same fashion
as the open of a character device, except that the Stream
head is attached to the socket inode. The /dev/socksys
driver implements the remainder of the system calls.

This approach does not required a library: the existing C
library socket functions are sufficient.

5 Results

6 Analysis

7 Conclusions

8 Future Work

9 Related Work

References

[GC94] Berny Goodheart and James Cox. The magic
garden explained: the internals of UNIX System
V Release 4, an open systems design / Berny
Goodheart & James Cox. Prentice Hall, Aus-
tralia, 1994. ISBN 0-13-098138-9.

[Mar01] Jim Mario. Solaris sockets, past and present.
Unix Insider, September 2001.

[MBKQ97] Marshall Kirk McKusick, Keith Bostic,
Michael J. Karels, and John S. Quaterman. The
design and implementation of the 4.4BSD op-
erating system. Addison-Wesley, third edition,
November 1997. ISBN 0-201-54979-4.

[Rit84] Dennis M. Ritchie. A Stream Input-output Sys-
tem. AT&T Bell Laboratories Technical Jour-
nal, 63(8):1897–1910, October 1984. Part 2.

[SUS95] Single UNIX Specification, Version 1. Open
Group Publication, The Open Group, 1995.
http://www.opengroup.org/onlinepubs/.

[SUS98] Single UNIX Specification, Version 2. Open
Group Publication, The Open Group, 1998.
http://www.opengroup.org/onlinepubs/.

[SUS03] Single UNIX Specification, Version 3. Open
Group Publication, The Open Group, 2003.
http://www.opengroup.org/onlinepubs/.

[TLI92] Transport Provider Interface Specification, Re-
vision 1.5. Technical Specification, UNIX Inter-
national, Inc., Parsipanny, New Jersey, Decem-
ber 10 1992. http://www.openss7.org/docs/-
tpi.pdf.

[TPI99] Transport Provider Interface (TPI) Specifi-
cation, Revision 2.0.0, Draft 2. Technical
Specification, The Open Group, Parsipanny,
New Jersey, 1999. http://www.opengroup.org/-
onlinepubs/.

[VS90] Ian Vessey and Glen Skinner. Implementing
Berkeley Sockets in System V Release 4. In Pro-
ceedings of the Winter 1990 USENIX Confer-
ence. USENIX, 1990.

[XNS99] Network Services (XNS), Issue 5.2, Draft 2.0.
Open Group Publication, The Open Group,
1999. http://www.opengroup.org/onlinepubs/.

[XTI99] XOpen Tranport Interface (XTI). Technical
Standard XTI/TLI Revision 1.0, X Program-
mer’s Group, 1999. http://www.opengroup.-
org/onlinepubs/.

6


