Signalling Link Interface (SLI) Specification

Signalling Link Interface (SLI)

Specification
Version 1.1 Edition 7.20141001
Updated October 25, 2014
Distributed with Package openss7-1.1.7.20141001
Copyright © 2008-2014 Monavacon Limited
All Rights Reserved.
Abstract:

This document is a Specification containing technical details concerning the implemen-
tation of the Signalling Link Interface (SLI) for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Signalling
Link Interface (SLI). It provides abstraction of the Signalling Link (SL) interface to
these components as well as providing a basis for Signalling Link control for other
Signalling Link protocols.

Brian Bidulock <bidulock@openss7.org> for
The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Published by:

OpenSS7 Corporation

1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Copyright (©) 2008-2014 Monavacon Limited
Copyright (© 2001-2008 OpenSS7 Corporation
Copyright (©) 1997-2000 Brian F. G. Bidulock

All Rights Reserved.
Unauthorized distribution or duplication is prohibited.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of
the license is included in the section entitled [GNU Free Documentation License], page 167.
Permission to use, copy and distribute this documentation without modification, for any purpose
and without fee or royalty is hereby granted, provided that both the above copyright notice and
this permission notice appears in all copies and that the name of OpenSS7 Corporation not be
used in advertising or publicity pertaining to distribution of this documentation or its contents
without specific, written prior permission. OpenSS7 Corporation makes no representation about
the suitability of this documentation for any purpose. It is provided “as is” without express or
implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infringement, or title; that
the contents of the document are suitable for any purpose, or that the implementation of such
contents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of
contract, negligence or other tortious action, arising out of or in connection with any use of this
document or the performance or implementation of the contents thereof.

http://www.openss7.com/
http://www.monavacon.com/
http://www.openss7.com/
mailto:bidulock@openss7.org

Short Contents

Prefaceo 3
1 Introduction.......... ... 7
2 The Signalling Link Layer 9
3 SLI Services Definition ... 13
4 SLI Primitives....... ..o e 33
5 Diagnostics Requirements L. 131
A LMI Header File Listing..................... 133
B SLI Header File Listing.................. i, 141
GlOSSATY . . et 151
ACTONYINS .« . 153
References. ... 155
LaCenSes . o oo 157

Table of Contents

Preface...... 3
NOtICE « et 3
ADSETaCT . o oo 3

PUurpOSE . o oo 3
Intent . ..o 3
Audienceo 3
Revision HiStory 3
Version Control. 4
ISO 9000 ComplANCEeo vuee et 4
DaASClaImIer . . 4
U.S. Government Restricted Rightso oot 4
Acknowledgementsot 4

1 Introduction............ 7

1.1 Related Documentationooiiiiiiiiiiiiiiiiiiiiannn. 7
111 ROLe. oo 7
1.2 Definitions, Acronyms, Abbreviations 7

2 The Signalling Link Layer................................. 9
2.1 Model of the SLI. e 9
2.2 SLI SeIVICES . v vttt ittt 10

2.2.1 Local Managementouueiutiniiieiiiiniiaieennennn.. 10
2.2.2 Protocol. 10
2.3 Purpose of the SLI.o 11

3 SLI Services Definition................................... 13

3.1 Local Management ServiCesoueeuuiiiiiiinenieenneneen.. 13
3.1.1 Acknowledgement Service...... ...t 13
3.1.2 Information Reporting Serviceo il 14
3.1.3 Physical Point of Attachment Service 14

3.1.3.1 PPA Attachment Servicecooiiiiiieiiieann.. 15
3.1.3.2 PPA Detachment Serviceccviiiiiiiiiinnnn.... 15
3.1.4 Initialization ServiCeooviuiiireeeiiiiiiiie e 16
3.1.4.1 Interface Enable Service i i 16
3.1.4.2 Interface Disable Service......... ..., 16
3.1.5 Options Management Servicec.ccviiiiiiieinine.n. 17
3.1.6 Error Reporting Service............ooiuiiiiiiiiiiiiiiniiien.. 18
3.1.7 Statistics Reporting Service.......... ..o oo 18
3.1.8 Event Reporting Service, 19
3.2 Protocol Servicesueiniii 19
3.2.1 Link Initialization Services......... ..., 19
3.2.1.1 Power On Service.oovuuiiiieeiiiiiiii i, 20
3.2.1.2 Emergency Service..........ouuiuuiiitiiiiiiii i 20
3.2.1.3 Start Serviceoi i 21
3.2.1.4 StOP ServiCe.ot 22

3.2.2 Data Transfer Service.ooouioiiii i 22

iii

iv Signalling Link Interface (SLI)

3.2.3 Congestion ServiCes.uuurte et 23
3.2.3.1 Transmit Congestion Service.............c.coooiiiiiiion.. 23
3.2.3.2 Receive Congestion Serviceooeviiiiieniieeann.. 24

3.2.4 Restoration Services 24
3.2.4.1 BSNT Retrieval Service..........coooiiiiiiiiiiiiiii... 25
3.2.4.2 Buffer Updating Service ... 25
3.2.4.3 Buffer Clearing Servicec..oviiiiiiiiiiiiiniiinn. 27

3.2.5 Processor Outage Servicesoouiiiiiiiiiiiiiiiiin. 28
3.2.5.1 Local Processor Outage Service.................c..oooeea.. 28
3.2.5.2 Remote Processor Outage Service..................... ... 29

3.2.6 Link Option Management Servicec.oovieiiuinne.... 30

3.2.7 Event Notification Serviceooiiiiiiiiiiiieniinnn. 30

4 SLI Primitives........ ... 33
4.1 Local Management Service Primitives.............. 33

4.1.1 Acknowledgement Service Primitives............................ 33
4.1.1.1 LMILOK_ACK ..o e 33
4.1.1.2 LMI_LERROR_ACK.ot 35

4.1.2 Information Reporting Service Primitives 39
4.1.2.1 LMILINFO_REQ ... i 39
4.1.2.2 LMILINFO_ACK . ..o e 42

4.1.3 Physical Point of Attachment Service Primitives................. 44
4.1.3.1 LMI_ATTACH.REQ . ..o 44
4.1.3.2 LMILDETACH.REQccoiii i 47

4.1.4 Initialization Service Primitives............. 50
4.1.41 LMI_ENABLE REQotii e 50
4.1.4.2 LMI_ENABLE_CON ... 53
4.1.4.3 LMIDISABLE_ REQ......ccccoiiiiiiii i 54
4.1.4.4 LMIDISABLE_CON.ot 57

4.1.5 Options Management Service Primitives......................... 58
4.1.5.1 LMI_.OPTMGMT_REQciii i 58
4.1.5.2 LMI_OPTMGMT_ACK ... 62

4.1.6 Event Reporting Service Primitives 64
4.1.6.1 LMI_LERROR_IND ... 64
4.1.6.2 LMI_STATS IND. ... i 68
4.1.6.3 LMI_LEVENT_IND.o 69

4.2 Protocol Service Primitives oo i 70

4.2.1 Link Initialization Service Primitives.............. 70
4.2.1.1 SL.POWER_.ON_REQ ...t 70
4.2.1.2 SL.LEMERGENCY_REQ oot 72
4.2.1.3 SL_LEMERGENCY_CEASES REQ..............cooiiiii.. 74
4.21.4 SL.START REQ ... oo e 76
4.2.1.5 SLIN_SERVICE_IND........ ..o, 78
4.21.6 SL_.OUT_.OF_SERVICE_INDcociiiiiiiii... 79
4.2.1.7 SL.STOP_REQco it i 81

4.2.2 Data Transfer Service Primitives............... 83
4.22.1 SLPDUREQ. ...« i 83
4.22.2 SL.PDU_IND ... e 84

4.2.3 Congestion Service Primitives............ ...t 85
4.2.3.1 SL_LINK_.CONGESTED_INDccoiiiiiiiiin.... 85
4.2.3.2 SL_LINK_CONGESTION_CEASED_IND.................. 87
4.2.3.3 SL_CONGESTION_DISCARD REQ.............coii... 89

4.2.3.4 SL_.CONGESTION_ACCEPT_-REQoiot. 91

4.2.3.5 SL.NO_CONGESTION_REQ..........cciiiiiiiiiiiat. 93

4.2.4 Restoration Service Primitiveso, 95
4.2.4.1 SL_RETRIEVE_BSNT_REQciiiiiiia. ... 95

4.2.42 SL_BSNT_IND ...ttt e 97

4.2.4.3 SL_.BSNT_NOT_RETRIEVABLE_IND..................... 98

4.2.4.4 SL_RETRIEVAL_REQUEST_AND_FSNC_REQ........... 99

4.2.4.5 SL_RETRIEVED_MESSAGE_IND 101

4.2.4.6 SL_RETRIEVAL_.COMPLETE_IND...................... 103

4.2.4.7 SL_RETRIEVAL_NOT_POSSIBLE_IND.................. 105

4.2.4.8 SL_.CLEAR_BUFFERS.REQ................coiiiiiii.. 106

4.2.4.9 SL.CLEAR.RTB.REQ.......coiiiiiiiiiiiiiiiann. 108

4.2.4.10 SL_RB_.CLEARED_IND..........ccooiiiiiiiiiiiiin... 110

4.2.4.11 SL_RTB_.CLEARED_IND.............coiiiiiiiii.... 111

4.2.5 Processor Outage Service Primitives 112
4.2.5.1 SL_.LOCAL_PROCESSOR_-OUTAGE_REQ............... 112

4.2.5.2 SL_LOCAL_PROCESSOR_OUTAGE_IND 114

4.2.5.3 SL.RESUME_REQ.....c.iiiiiiiiiiiiii e 115

4.2.5.4 SL_LOCAL_PROCESSOR_RECOVERED_IND........... 117

4.2.5.5 SL_REMOTE_PROCESSOR_OUTAGE_IND............. 118

4.2.5.6 SL_REMOTE_PROCESSOR_RECOVERED_IND 119

4.2.5.7 SL.CONTINUE.REQ......ccoiuiiiiiiiiiiiiiiinnn, 120

4.2.6 Link Option Management Service Primitives................... 122
4.2.6.1 SL_OPTMGMT_REQ........cooiiiiiiiiiiiiiin... 122

4.2.6.2 SL_OPTMGMT_ACKo, 126

4.2.7 FEvent Notification Service Primitives........................... 128
4.2.71 SLNOTIFY_REQco e 128

4.2.7.2 SLNOTIFY_INDt 130

5 Diagnostics Requirements 131
5.1 Non-Fatal Error Handling Facility.........t 131
5.2 Fatal Error Handling Facility o it 131
Appendix A LMI Header File Listing 133
Appendix B SLI Header File Listing 141
GloSSary 151
ACronyms 153
References 155
Licenses 157
GNU Affero General Public License, 157
Preamble. 157

How to Apply These Terms to Your New Programs................... 166

GNU Free Documentation Licenseooiiiiiiiiiiiieiaie... 167

Signalling Link Interface (SLI)

List of Figures

Figure 2.1:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:
Figure 3.16:
Figure 3.17:
Figure 3.18:
Figure 3.19:
Figure 3.20:
Figure 3.21:
Figure 3.22:
Figure 3.23:
Figure 3.24:
Figure 3.25:
Figure 3.26:
Figure 3.27:
Figure 3.28:
Figure 3.29:

2014-10-25

Model of the SLI

Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:

Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:
Message Flow:

Table of Contents

... 9
Successful Acknowledgement Service 13
Unsuccessful Acknowledgement Service.......................... 13
Successful Information Reporting Service 14
Successful Attachment Service 15
Successful Detachment Service........., 16
Successful Enable Service i 16
Successful Disable Service ... 17
Successful Options Management Service 18
Successful Error Reporting Service...... ... 18

Successful Statistics Reporting Service 19
Successful Event Reporting Service 19
Successful Power On Serviceccouiiiiiiiiiniieain. 20
Successful Emergency Service.ot 21
Successful Start Service 21
Unsuccessful Start Service i .. 22
Successful Stop Service ... 22
Successful Data Transfer Serviceo, 23
Successful Transmit Congestion Service........................ 23
Successful Receive Congestion Servicec.coooo... 24
Successful BSNT Retreival Service.............ccooiiiiiii. 25
Unsuccessful BSNT Retrieval Service 25
Successful Buffer Updating Service.......... ... 26
Unsuccessful Buffer Updating Service 27
Successful Buffer Clearing Serviceccoii .. 27
Successful Buffer Clearing Servicecoiiiiiiii.. 28
Successful Processor Qutage Serviceccooiiiino.. 29
Successful Processor Qutage Serviceccooiieiino.. 30
Successful Link Options Management Service 30
Successful Event Notification Serviceccoiiii .. 31

1

List of Tables

Table 2.1: Local Management SeTviCest 10
Table 2.2: Protocol SeTviCes o e 11

2 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Preface

Preface

Notice

Software in this document and related software is released under the AGPL (see [GNU Affero General
Public License|, page 157). Please note, however, that there are different licensing terms for some
of the manual package and some of the documentation. Consult permission notices contained in the
documentation of those components for more information.

This document is released under the FDL (see [GNU Free Documentation License], page 167) with

no invariant sections, no front-cover texts and no back-cover texts.

Abstract

This document is a Specification containing technical details concerning the implementation of the
Signalling Link Interface (SLI) for OpenSS7. It contains recommendations on software architecture
as well as platform and system applicability of the Signalling Link Interface (SLI).

This document specifies a Signalling Link Interface (SLI) Specification in support of the OpenSS7
Signalling Link (SL) protocol stacks. It provides abstraction of the Signalling Link interface to
these components as well as providing a basis for Signalling Link control for other Signalling Link
protocols.

Purpose

The purpose of this document is to provide technical documentation of the Signalling Link Interface
(SLI). This document is intended to be included with the OpenSS7 STREAMS software package
released by OpenSS7 Corporation. It is intended to assist software developers, maintainers and users
of the Signalling Link Interface (SLI) with understanding the software architecture and technical
interfaces that are made available in the software package.

Intent

It is the intent of this document that it act as the primary source of information concerning the
Signalling Link Interface (SLI). This document is intended to provide information for writers of
OpenSS7 Signalling Link Interface (SLI) applications as well as writers of OpenSS7 Signalling Link
Interface (SLI) Users.

Audience

The audience for this document is software developers, maintainers and users and integrators of the
Signalling Link Interface (SLI). The target audience is developers and users of the OpenSS7 SS7
stack.

Revision History

Take care that you are working with a current version of this documentation: you will not be
notified of updates. To ensure that you are working with a current version, check the OpenSS7
Project website for a current version.

A current version of this specification is normally distributed with the OpenSS7 package, openss7-
1.1.7.20141001.

http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

2014-10-25 3

http://www.openss7.org/
http://www.openss7.org/
http://www.openss7.org/repos/tarballs/openss7-1.1.7.20141001.tar.bz2

Preface

Version Control

Although the author has attempted to ensure that the information in this document is complete and
correct, neither the Author nor OpenSS7 Corporation will take any responsibility in it. OpenSS7
Corporation is making this documentation available as a reference point for the industry. While
OpenSS7 Corporation believes that these interfaces are well defined in this release of the document,
minor changes may be made prior to products conforming to the interfaces being made available.
OpenSS7 Corporation reserves the right to revise this software and documentation for any reason,
including but not limited to, conformity with standards promulgated by various agencies, utilization
of advances in the state of the technical arts, or the reflection of changes in the design of any
techniques, or procedures embodied, described, or referred to herein. OpenSS7 Corporation is under
no obligation to provide any feature listed herein.

$Log: sli.texi,v $

Revision 1.1.2.2 2011-02-07 02:21:46 brian

- updated manuals

Revision 1.1.2.1 2009-06-21 10:56:49 brian
- added files to new distro

ISO 9000 Compliance

Only the TEX, texinfo, or roff source for this maual is controlled. An opaque (printed, postscript or
portable document format) version of this manual is a UNCONTROLLED VERSION.

Disclaimer

OpenSS7 Corporation disclaims all warranties with regard to this documentation including all im-
plied warranties of merchantability, fitness for a particular purpose, non-infrincement, or title; that
the contents of the manual are suitable for any purpose, or that the implementation of such con-
tents will not infringe on any third party patents, copyrights, trademarks or other rights. In no
event shall OpenSS7 Corporation be liable for any direct, indirect, special or consequential dam-
ages or any damages whatsoever resulting from loss of use, data or profits, whether in an action or
contract, negligence or other tortious action, arising out of or in connection with any use of this
documentation or the performance or implementation of the contents thereof.

U.S. Government Restricted Rights

If you are licensing this Software on behalf of the U.S. Government ("Government"), the following
provisions apply to you. If the Software is supplied by the Department of Defense ("DoD"), it is clas-
sified as "Commercial Computer Software" under paragraph 252.227-7014 of the DoD Supplement
to the Federal Aquisition Regulations ("DFARS") (or any successor regulations) and the Govern-
ment is acquiring only the license rights granded herein (the license rights customarily provided to
non-Government users). If the Software is supplied to any unit or agency of the Government other
than DoD, it is classified as "Restricted Computer Software" and the Government’s rights in the
Software are defined in paragraph 52.227-19 of the Federal Acquisition Regulations ("FAR") (or any
successor regulations) or, in the cases of NASA, in paragraph 18.52.227-86 of the NASA Supplerment
to the FAR (or any successor regulations).

Acknowledgements

The OpenSS7 Project was funded in part by:

4 Version 1.1 Rel. 7.20141001

http://www.openss7.org/

Signalling Link Interface (SLI) Preface

e Monavacon Limited

e OpenSS7 Corporation
Thanks to the subscribers to and sponsors of The OpenSS7 Project. Without their support, open
software like this would not be possible.

As with most open source projects, this project would not have been possible without the valiant
efforts and productive software of the Free Software Foundation, the Linux Kernel Community, and
the open source software movement at large.

2014-10-25)

http://www.monavacon.com/
http://www.openss7.com/
http://www.openss7.org/
http://www.fsf.org/
http://www.kernel.org/

Signalling Link Interface (SLI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Signalling Link
Interface (SLI) definition. The Signalling Link Interface (SLI) enables the user of a a signalling link
service to access and use any of a variety of conforming signalling link providers without specific
knowledge of the provider’s protocol. The service interface is designed to support any network
signalling link protocol and user signalling link protocol. This interface only specifies access to
signalling link service providers, and does not address issues concerning signalling link management,
protocol performance, and performance analysis tools.

This specification assumes that the reader is familiar with ITU-T state machines and signalling link
interfaces (e.g. Q.703, Q.2210), and STREAMS.

1.1 Related Documentation

— ITU-T Recommendation Q.703 (White Book)

— ITU-T Recommendation Q.2210 (White Book)
— ANSI T1.111.3/2002

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the services provided by the Signalling System No.
7 (SS7) for ITU-T, ANSI and ETSI applications as described in ITU-T Recommendation Q.703,
ITU-T Recommendation Q.2210, ANSI T1.111.3, ETSI ETS 300 008-1. These specifications are
targeted for use by developers and testers of protocol modules that require signalling link service.

1.2 Definitions, Acronyms, Abbreviations

LM Local Management.
LMS Local Management Service.
LMS User A user of Local Management Services.

LMS Provider
A provider of Local Management Services.

Originating SL User
A SL-User that initiates a Signalling Link.

Destination SL User
A SL-User with whom an originating SL user wishes to establish a Signalling Link.

1SO International Organization for Standardization

SL User Kernel level protocol or user level application that is accessing the services of the
Signalling Link sub-layer.

SL Provider
Signalling Link sub-layer entity/entities that provide/s the services of the Signalling
Link interface.

SLI Signalling Link Interface

2014-10-25 7

Chapter 1: Introduction

TIDU Signalling Link Interface Data Unit

TSDU Signalling Link Service Data Unit

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS A communication services development facility first available with UNIX System V
Release 3.

8 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) The Signalling Link Layer

2 The Signalling Link Layer

The Signalling Link Layer provides the means to manage the association of SL-Users into con-
nections. It is responsible for the routing and management of data to and from signalling link
connections between SL-user entities.

2.1 Model of the SLI

The SLI defines the services provided by the signalling link layer to the signalling link user at the
boundary between the signalling link provider and the signalling link user entity. The interface
consists of a set of primitives defined as STREAMS messages that provide access to the signalling
link layer services, and are transferred between the SLS user entity and the SLS provider. These
primitives are of two types; ones that originate from the SLS user, and other that originate from the
SLS provider. The primitives that originate from the SLS user make requests to the SLS provider,
or respond to an indication of an event of the SLS provider. The primitives that originate from the
SLS provider are either confirmations of a request or are indications to the CCS user that an event
has occurred. Figure 2.1 shows the model of the SLI.

e M
Signalling Link
User
Request/Response
Primitives SLI - User
Kernel In(_:lic_a_tion/Confirmation
Primitives
Signalling Link
Provider
SDTI

Signalling Terminal
Provider

Signalling Data Link
Provider

Figure 2.1: Model of the SLI
N

The SLI allows the SLS provider to be configured with any signalling link layer user (such as a
signalling link application) that also conforms to the SLI. A signalling link layer user can also
be a user program that conforms to the SLI and accesses the SLS provider via putmsg(2s) and
getmsg(2s) system calls. The typical configuration, however, is to link a signalling link stream
beneath a message transfer part multiplexing driver.

2014-10-25 9

http://www.openss7.org/man2html?putmsg(2s)
http://www.openss7.org/man2html?getmsg(2s)

Chapter 2: The Signalling Link Layer

2.2 SLI Services

The features of the SLI are defined in terms of the services provided by the SLS provider, and the
individual primitives that may flow between the SLS user and the SLS provider.

The SDLI Services are broken into two groups: local management services and protocol services.
Local management services are responsible for the local management of streams, assignment of
streams to physical points of attachment, enabling and disabling of streams, management of options
associated with a stream, and general acknowledgement and event reporting for the stream. Protocol

services consist of .

2.2.1 Local Management

Local management services are listed in Table 2.1.

Phase Service Primitives
Local Acknowledgement | LMI_OK_ACK, LMI_ERROR_ACK
Management
Information LMI_INFO_REQ, LMI_INFO_ACK
Reporting
PPA Attachment LMI_ATTACH_REQ, LMI_DETACH_REQ,
LMI_OK_ACK
Initialization LMI_ENABLE_REQ, LMI_ENABLE_CON,
LMI_DISABLE_REQ, LMI_DISABLE_CON
Options LMI_OPTMGMT_REQ, LMI_OPTMGMT_ACK
Management
Event Reporting LMI_ERROR_IND, LMI_STATS_IND,

LMI_EVENT_IND

Table 2.1: Local Management Services

The local management services interface is described in Section 3.1 [Local Management Services],
page 13, and the primitives are detailed in Section 4.1 [Local Management Service Primitives],
page 33. The local management services interface is defined by the ss7/1mi.h header file (see
Appendix A [LMI Header File Listing], page 133).

2.2.2 Protocol

Protocol services are listed in Table 2.2.

10

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

The Signalling Link Layer

Phase Service Primitives
Initialization Power On SL_POWER_ON_REQ,
Emergency SL_EMERGENCY_REQ,
SL_EMERGENCY_CEASES_REQ,
Start SL_START_REQ, SL_IN_SERVICE_IND,
Stop SL_OUT_OF_SERVICE_IND, SL._STOP_REQ,

Data Transfer

Data Transfer

SL_PDU_REQ, SL_PDU_IND

Congestion Transmit SL_LINK_CONGESTED_IND,
Congestion SL_LINK_CONGESTION_CEASED_IND
Receive SL_CONGESTION_DISCARD_REQ,
Congestion SL_CONGESTION_ACCEPT_REQ,
SL_NO_CONGESTION_REQ
Restoration BSNT Retrieval SL_RETRIEVE_BSNT_REQ, SL_BSNT_IND,
SL_BSNT_NOT_RETRIEVABLE_IND
Buffer Updating SL_RETRIEVAL_REQUEST_AND_FSNC_REQ,
SL_RETRIEVED_MESSAGE_IND,
SL_RETRIEVAL_COMPLETE_IND,
SL_RETRIEVAL_NOT_POSSIBLE_IND
Buffer Clearing SL_CLEAR_BUFFERS_REQ,

SL_CLEAR_RTB_REQ, SL_RB_CLEARED_IND,
SL_RTB_CLEARED_IND

Processor Outage

Local Processor
Outage

SL_LOCAL_PROCESSOR_OUTAGE_REQ,
SL_LOCAL_PROCESSOR_OUTAGE_IND,
SL_RESUME_REQ,
SL_LOCAL_PROCESSOR_RECOVERED_IND

Remote
Processor Outage

SL_REMOTE_PROCESSOR_OUTAGE_IND,
SL_REMOTE_PROCESSOR_RECOVERED_IND,
SL_CONTINUE_REQ

Options Options SL_OPTMGMT_REQ, SL_OPTMGMT_ACK
Management Management

Event Event SL_NOTIFY_REQ, SL_NOTIFY_IND
Notification Notification

Table 2.2: Protocol Services

The protocol services interface is described in Section 3.2 [Protocol Services|, page 19, and the
primitives are detailed in Section 4.2 [Protocol Service Primitives], page 70. The protocol services
interface is defined by the ss7/s1i.h header file (see Appendix B [SLI Header File Listing], page 141).

2.3 Purpose of the SLI

The SLI is typically implemented as a device driver controlling an intelligent protocol controller
device that provides access to channels. The purpose behind exposing this low level interface is that
almost all communications channel devices can be placed into a SS7 HDLC mode, where a data
stream can be exchanged between the driver and the medium. The SLI provides and inteface that,
once implemented as a driver for a new device, can provide complete and verified SS7 signalling

2014-10-25 11

Chapter 2: The Signalling Link Layer

link capabilities by linking under a generic MTP (Message Transfer Part) multiplex driver an open
device stream.

This allows MTP drivers to be verified independently for correct operation and then simply used
for all manner of new device drivers that can implement the SLI interface.

12 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

3 SLI Services Definition

3.1 Local Management Services

3.1.1 Acknowledgement Service

The acknowledgement service provides the LMS user with the ability to receive positive and negative
acknowledgements regarding the successful or unsuccessful completion of services.

e LMI_OK_ACK: The LMI_OK_ACK message is used by the LMS provider to indicate successful
receipt and completion of a service primitive request that requires positive acknowledgement.

e LMI_ERROR_ACK: The LMI_ERROR_ACK message is used by the LMS provider to indicate success-
ful receipt and failure to complete a service primitive request that requires negative acknowl-
edgement.

A successful invocation of the acknowledgement service is illustrated in Figure 3.1.

-

LM1_* where LMI_* is:
request LMI_ATTACH
\ LMI_DETACH
SDL_CONNECT
-7 SDL_DISCONNECT
-
LMI_OK
acknowledgement

Figure 3.1: Message Flow: Successful Acknowledgement Service
-

J

As illustrated in Figure 3.1, the service primitives for which a positive acknowledgement may be
returned are the LMI_ATTACH_REQ and LMI_DETACH_REQ.

An unsuccessful invocation of the acknowledgement service is illustrated in Figure 3.2.

-
LMI_* where LMI_* is:
request LMI_INFO
LMI_ATTACH
T LMI_DETACH
-7 LMI_ENABLE
- LMI_DISABLE
LMI_ERROR LMI_OPTMGMT
acknowledgement SDL_CONNECT

SDL_DISCONNECT

Figure 3.2: Message Flow: Unsuccessful Acknowledgement Service
N

As illustrated in Figure 3.2, the service primitives for which a negative acknowledgement may be re-
turned are the LMI_INFO_REQ, LMI_ATTACH_REQ, LMI_DETACH_REQ, LMI_ENABLE_REQ, LMI_DISABLE_
REQ and LMI_OPTMGMT_REQ messages.

2014-10-25 13

Chapter 3: SLI Services Definition

3.1.2 Information Reporting Service

The information reporting service provides the LMS user with the ability to elicit information from
the LMS provider.

e LMI_INFO_REQ: The LMI_INFO_REQ message is used by the LMS user to request information
about the LMS provider.

e IMI_INFO_ACK: The LMI_INFO_ACK message is issued by the LMS provider to provide requested
information about the LMS provider.

A successful invocation of the information reporting service is illustrated in Figure 3.3.

-

LMI_INFO
request

-

LMI_INFO
acknowledgement

Figure 3.3: Message Flow: Successful Information Reporting Service
k

3.1.3 Physical Point of Attachment Service

The local management interface provides the LMS user with the ability to associate a stream to a
physical point of appearance (PPA) or to disassociate a stream from a PPA. The local management
interface provides for two styles of LMS provider:

Style 1 LMS Provider

A Style 1 LMS provider is a provider that associates a stream with a PPA at the time of the
first open(2s) call for the device, and disassociates a stream from a PPA at the time of the last
close(2s) call for the device.

Physical points of attachment (PPA) are assigned to major and minor device number combinations.
When the major and minor device number combination is opened, the opened stream is automatically
associated with the PPA for the major and minor device number combination. The last close of the
device disassociates the PPA from the stream.

Freshly opened Style 1 LMS provider streams start life in the LMI_DISABLED state.

This approach is suitable for LMS providers implemented as real or pseudo-device drivers and is
applicable when the number of minor devices is small and static.

Style 2 LMS Provider

A Style 2 LMS provider is a provider that associates a stream with a PPA at the time that the LMS
user issues the LMI_ATTACH_REQ message. Freshly opened streams are not associated with any PPA.
The Style 2 LMS provider stream is disassociated from a PPA when the stream is closed or when
the LMS user issues the LMI_DETACH_REQ message.

Freshly opened Style 2 LMS provider streams start life in the LMI_UNATTACHED state.

This approach is suitable for LMS providers implemented as clone real or pseudo-device drivers and
is applicable when the number of minor devices is large or dynamic.

14 Version 1.1 Rel. 7.20141001

http://www.openss7.org/man2html?open(2s)
http://www.openss7.org/man2html?close(2s)

Signalling Link Interface (SLI) SLI Services Definition

3.1.3.1 PPA Attachment Service

The PPA attachment service provides the LMS user with the ability to attach a Style 2 LMS provider
stream to a physical point of appearance (PPA).

e IMI_ATTACH_REQ: The LMI_ATTACH_REQ message is issued by the LMS user to request that a
Style 2 LMS provider stream be attached to a specified physical point of appearance (PPA).

e LMI_QOK_ACK: Upon successful receipt and processing of the LMI_ATTACH_REQ message, the LMS
provider acknowledges the success of the service completion with a LMI_0K_ACK message.

e LMI_ERROR_ACK: Upon successful receipt but failure to process the LMI_ATTACH_REQ message,

the LMS provider acknowledges the failure of the service completion with a LMI_ERROR_ACK
message.

A successful invocation of the attachment service is illustrated in Figure 3.4.

-

LMI_ATTACH
request

-

LMI_OK
acknowledgement

Figure 3.4: Message Flow: Successful Attachment Service
k

3.1.3.2 PPA Detachment Service

The PPA detachment service provides the LMS user with the ability to detach a Style 2 LMS
provider stream from a physical point of attachment (PPA).

e LMI_DETACH_REQ: The LMI_DETACH_REQ message is issued by the LMS user to request that
a Style 2 LMS provider stream be detached from the attached physical point of appearance
(PPA).

e LMI_OK_ACK: Upon successful receipt and processing of the LMI_DETACH_REQ message, the LMS
provider acknowledges the success of the service completion with a LMI_O0K_ACK message.

e LMI_ERROR_ACK: Upon successful receipt but failure to process the LMI_DETACH_REQ message,
the LMS provider acknowledges the failure of the service completion with a LMI_ERROR_ACK
message.

A successful invocation of the detachment service is illustrated in Figure 3.5.

2014-10-25 15

Chapter 3: SLI Services Definition

-

LMI_DETACH
request

-

LMI_OK
acknowledgement

Figure 3.5: Message Flow: Successful Detachment Service
-

3.1.4 Initialization Service

The initialization service provides the LMS user with the abilty to enable and disable the stream
for the associated PPA.

3.1.4.1 Interface Enable Service

The interface enable service provides the LMS user with the ability to enable an LMS provider
stream that is associated with a PPA. Enabling the interface permits the LMS user to exchange
protocol service interface messages with the LMS provider.

e LMI_ENABLE_REQ: The LMI_ENABLE_REQ message is issued by the LMS user to request that the
protocol service interface be enabled.

e LMI_ENABLE_CON: Upon successful enabling of the protocol service interface, the LMS provider
acknowledges successful completion of the service by issuing a LMI_ENABLE_CON message to the
LMS user.

e LMI_ERRORK_ACK: Upon unsuccessful enabling of the protocol service interface, the LMS
provider acknowledges the failure to complete the service by issuing an LMI_ERROR_ACK
message to the LMS user.

A successful invocation of the enable service is illustrated in Figure 3.6.

-

LMI_ENABLE
request

\
/

LMI_ENABLE
confirmation

Figure 3.6: Message Flow: Successful Enable Service
-

3.1.4.2 Interface Disable Service

The interface disable service provides the LMS user with the ability to disable an LMS provider
stream that is associated with a PPA. Disabling the interface withdraws the LMS user’s ability to
exchange protocol service interface messages with the LMS provider.

16 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

e LMI_DISABLE_REQ: The LMI_DISABLE_REQ message is issued by the LMS user to request that

the protocol service interface be disabled.

LMI_DISABLE_CON: Upon successful disabling of the protocol service interface, the LMS provider
acknowledges successful completion of the service by issuing a LMI_DISABLE_CON message to
the LMS user.

LMI_ERRORK_ACK: Upon unsuccessful disabling of the protocol service interface, the LMS
provider acknowledges the failure to complete the service by issuing an LMI_ERROR_ACK message
to the LMS user.

A successful invocation of the disable service is illustrated in Figure 3.7.

-

LMI_DISABLE
request

\
/

LMI_DISABLE
confirmation

Figure 3.7: Message Flow: Successful Disable Service

3.1.5 Options Management Service

The options management service provides the LMS user with the ability to control and affect various
generic and provider-specific options associated with the LMS provider.

e LMI_QOPTMGMT_REQ: The LMS user issues a LMI_OPTMGMT_REQ message when it wishes to inter-

rogate or affect the setting of various generic or provider-specific options associated with the
LMS provider for the stream upon which the message is issued.

LMI_OPTMGMT_ACK: Upon successful receipt of the LMI_OPTMGMT_REQ message, and successful
options processing, the LMS provider acknowledges the successful completion of the service
with an LMI_OPTMGMT_ACK message.

LMI_ERROR_ACK: Upon successful receipt of the LMI_OPTMGMT_REQ message, and unsuccessful
options processing, the LMS provider acknowledges the failure to complete the service by issuing
an LMI_ERROR_ACK message to the LMS user.

A successful invocation of the options management service is illustrated in Figure 3.8.

2014-10-25 17

Chapter 3: SLI Services Definition

-

LMI_OPTMGMT
request

-

LMI_OPTMGMT
acknowledgement

Figure 3.8: Message Flow: Successful Options Management Service
-

3.1.6 Error Reporting Service

The error reporting service provides the LMS provider with the ability to indicate asynchronous
errors to the LMS user.

e LMI_ERROR_IND: The LMS provider issues the LMI_ERROR_IND message to the LMS user when
it needs to indicate an asynchronous error (such as the unusability of the communications
medium).

A successful invocation of the error reporting service is illustrated in Figure 3.9.

~
LMI_ERROR
indication
Figure 3.9: Message Flow: Successful Error Reporting Service
- J

3.1.7 Statistics Reporting Service
e IMI_STATS_IND:

A successful invocation of the statistics reporting service is illustrated in Figure 3.10.

18 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

-

PR

LMI_STATS
indication

Figure 3.10: Message Flow: Successful Statistics Reporting Service
-

~

3.1.8 Event Reporting Service

The event reporting service provides the LMS provider with the ability to indicate specific asyn-
chronous management events to the LMS user.

e LMI_EVENT_IND: The LMS provider issues the LMI_EVENT_IND message to the LMS user when
it wishes to indicate an asynchronous (management) event to the LMS user.

A successful invocation of the event reporting service is illustrated in Figure 3.11.

-

PR

LMI_EVENT
indication

Figure 3.11: Message Flow: Successful Event Reporting Service
-

3.2 Protocol Services

Protocol services are specific to the Signalling Link interface. These services consist of initialization
of the link and preparation for the transfer of signal units, the transfer of signal units, transmit and
receive congestion control, BSNT retrieval, buffer updating, buffer clearing, local processor outage,
remote processor outage, link options management and management event notification.

The service primitives that implement the protocol services are described in detail in Section 4.2
[Protocol Service Primitives], page 70.

3.2.1 Link Initialization Services

The link initialization services provide the SLS user with the ability to power on the terminal, set
emergency status, start the signalling link and stop the signalling link. The service primitives that
implement the link initialization services are described in detail in Section 4.2.1 [Link Initialization
Service Primitives], page 70.

2014-10-25 19

Chapter 3: SLI Services Definition

3.2.1.1 Power On Service

The power on service provides the SLS user with the ability to power on the signalling data terminal.
The signalling data terminal must be powered on at least once before the link can be started.

e SL_POWER_ON_REQ: The SL_POWER_ON_REQ message is used by the SLS user to request that the
SLS provider power on the signalling data terminal. If the signalling data terminal does not
require power (such as a software module), this serves to initialize the signalling data terminal
functions.

A successful invocation of the power on service is illustrated in Figure 3.12.

-

SL_POWER_ON
request

\

Figure 3.12: Message Flow: Successful Power On Service
N

3.2.1.2 Emergency Service

The emergency service provides the SLS user with the ability to specify whether normal or emergency
alignment procedures should take effect on the current or next alignment procedure. Emergency
alignment procedures have a shorter duration (short proving period) than normal alignment proce-
dures. Some SS7 protocol variants (TTC) always use emergency alignment procedures and are not
affected by this service.

e SL_EMERGENCY_REQ: The SL_EMERGENCY_REQ message is used by the SLS user to request that
the emergency alignment procedure should take effect on the current or next alignment of the
signalling link.

e SL_EMERGENCY_CEASES_REQ: The SL_EMERGENCY_CEASES_REQ message is used by the SLS user
to request that the normal alignment procedure should take effect on the current or next
alignment of the signalling link.

A successful invocation of the emergency service is illustrated in Figure 3.13.

20 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

SLI Services Definition

-

SL_EMERGENCY_CEASES
request

\

SL_EMERGENCY
request

\

\

Figure 3.13: Message Flow: Successful Emergency Service

~

3.2.1.3 Start Service

The start service provides the SLS user with the ability to align the signalling link and have it placed
into service. The start service must be successfully invoked on both sides of the signalling link before

the signalling link is able to exchange message signal units.

e SL_START_REQ: The SL_START_REQ message is used by the SLS user to request that the sig-

nalling link be aligned a placed into service.

e SL_IN_SERVICE_IND: The SL_IN_SERVICE_IND message is used by the SLS provider to indicate
that the signalling link has been successfully aligned and has been placed into service at Level

2.

A successful invocation of the start service is illustrated in Figure 3.14.

-

SL_START
request

-

SL_IN_SERVICE
indication

-

Figure 3.14: Message Flow: Successful Start Service

SL_START
request

>

SL_IN_SERVICE
indication

A unsuccessful invocation of the start service is illustrated in Figure 3.15.

2014-10-25

21

Chapter 3: SLI Services Definition

-

SL_START SL_START
request request

— | | —

- R
SL_OUT_OF_SERVICE SL_OUT_OF_SERVICE
indication indication

Figure 3.15: Message Flow: Unsuccessful Start Service
N

3.2.1.4 Stop Service

The stop service provides the SLS user and provider with the ability to take a signalling link out
of service. Once the stop service has successfully completed, the signalling link is no longer able to
exchange message signal units.

e SL_STOP_REQ: The SL_STOP_REQ message is used by the SLS user to request that the signalling
link be taken out of service.

e SL_OUT_OF_SERVICE_IND: The SL_OUT_OF_SERVICE_IND message is used by the SLS provider
to indicate that the signalling link has been taken out of service by the SLS provider.

A successful invocation of the stop service is illustrated in Figure 3.16.

-

SL_STOP
request

R

SL_OUT_OF_SERVICE
indication

Figure 3.16: Message Flow: Successful Stop Service
-

3.2.2 Data Transfer Service

The data transfer service provides the SLS user with the ability to exchange message signal units
on the signalling link. The service primitives that implement the data transfer service are described
in detail in Section 4.2.2 [Data Transfer Service Primitives], page 83.

e SL_PDU_REQ: The SL_PDU_REQ message is used by the SLS user to request that a message signal
unit be sent on the signalling link.

e SL_PDU_IND: The SL_PDU_IND message is used by the SLS provider to indicate that a message
signal unit has been received on the signalling link.

A successful invocation of the data transfer service is illustrated in Figure 3.17.

22 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

-

SL_PDU
request

SL_PDU
indication

Figure 3.17: Message Flow: Successful Data Transfer Service
N

~

3.2.3 Congestion Services

The congestion services provide the SLS user with the ability to invoke a receive congestion policy.
They also provide the SLS provider with the ability to indicate transmit congestion levels. The
service primitives that implement the congestion services are described in detail in Section 4.2.3
[Congestion Service Primitives], page 85.

3.2.3.1 Transmit Congestion Service

The transmit congestion service provides the SLS provider with the ability to indicate transmit
congestion (and corresponding levels) to the SLS user. There are 4 levels of congestion, 0, 1, 2 and
3. Each congestion level has an onset threshold and an abatement threshold. When the transmit
buffer occupancy exceeds the onset threshold for the level, congestion is indicated at that level.
When the transmit buffer occupancy falls below the abatement threshold for the level, congestion
abatement is indicated. Some SS7 protocol variants do not have congestion levels and only signal
the presence or lack of congestion.
When congestion is indicated at a level, the SLS user should discard messages that have a message
priority that is less than the level at which congestion has been indicated.
e SL_LINK_CONGESTED_IND: The SL_LINK_CONGESTED_IND message is used by the SLS provider
to indicate that congestion onset has occurred for the congestion level indicated in the message.

e SL_LINK_CONGESTION_CEASED_IND: The SL_LINK_CONGESTION_CEASED_IND message is used
by the SLS provider to indicate that congestion abatement has occurred for the congestion
level indicated in the message.

A successful indication of the transmit congestion service is illustrated in Figure 3.18.

-

P

SL_LINK_CONGESTED
indication

SL_LINK_CONG_CEASED
indication

Figure 3.18: Message Flow: Successful Transmit Congestion Service
N

2014-10-25 23

Chapter 3: SLI Services Definition

3.2.3.2 Receive Congestion Service

The receive congestion service provides the SLS user with the ability to specify that receive conges-
tion is in effect or has abated and the policy to use for received message signal units under congestion.
A discard policy indicates that received message signal units should be discarded (and not acknowl-
edged); receive congestion is signalled to the sending side of the signalling link. An accept policy
indicates that received message signal units should not be discarded and should be acknowledged;
receive congestion is signalled to the sending side of the signalling link. When receive congestion
abates, the abatement of receive congestion is signalled to the sending side of the signalling link.

The SLS provider may also perform its own receive congestion onset, abatement and policy. The
SLS provider does not indicate its current receive congestion level or policy to the SLS user.

e SL_NO_CONGESTION_REQ: The SL_NO_CONGESTION_REQ message is used by the SLS user to
specify that receive congestion has abated and that receive congestion should no longer be
signalled to the sending side of the signalling link.

e SL_CONGESTION_ACCEPT_REQ: The SL_CONGESTION_ACCEPT_REQ message is used by the SLS
user to specify that receive congestion has onset and that receive congestion should be signalled
to the sending side of the signalling link. The congestion policy is an accept policy that allows
message signal units to continue to be delivered to the SLS user and acknowledged to the remote
end of the signalling link.

e SL_CONGESTION_DISCARD_REQR: The SL_CONGESTION_DISCARD_REQ message is used by the SLS
user to specify that receive congestion has onset and that receive congestion should be signalled
to the sending side of the signalling link. The congestion policy is a discard policy that requires
the SLS provider to discard message signal units without delivering them to the SLS user and
they are not to be acknowledged to the remote end of the signalling link.

A successful invocation of the receive congestion service is illustrated in Figure 3.19.

-

SL_CONGESTION_DISCARD
request

\

SL_CONGESTION_ACCEPT
request

\

SL_NO_CONGESTION
request

\

Figure 3.19: Message Flow: Successful Receive Congestion Service
N

3.2.4 Restoration Services

Restoration services consist of the services necessary to change over a link, update its buffers, and
clearing any unnecessarily old MSUs from the receive buffer or retransmission buffer. The service
primitives that implement the restoration services are detailed in Section 4.2.4 [Restoration Service
Primitives|, page 95.

24 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

3.2.4.1 BSNT Retrieval Service

The BSNT retrieval service is a somewhat optional service in support of the sequenced changeover
procedure of the Message Transfer Part. It is ‘somewhat’ optional due to the possibility that time-
controlled changeover is always used, per ETSI ETS 300 008-1.

e SL_RETRIEVE_BSNT_REQ: The SL_RETRIEVE_BSNT_REQ message is used by the SLS user to
request that the SLS provider indicate the last transmitted backward sequence number (BSNT).

e SL_BSNT_IND: The SL_BSNT_IND message is used by the SLS provider to indicate the last
transmitted backward sequence number (BSNT) when requested by the SLS user with a SL_
RETRIEVE_BSNT_REQ message.

e SL_BSNT_NOT_RETRIEVABLE_IND: The SL_BSNT_NOT_RETRIEVABLE_IND message is used by the
SLS provider to indicate that the last transmitted backward sequence number (BSNT) is not
available when requested by the SLS user with a SL_RETRIEVE_BSNT_REQ message. This may
be due to hardware or other failures.

A successful invocation of the BSNT retrieval service is illustrated in Figure 3.20.

-

SL_RETRIEVE_BSNT
request

-

SL_BSNT
indication

Figure 3.20: Message Flow: Successful BSNT Retreival Service
_

An unsuccessful invocation of the BSNT retrieval service is illustrated in Figure 3.21.

-

SL_RETRIEVE_BSNT
request

-

SL_BSNT_NOT_RETRIEVABLE
indication

Figure 3.21: Message Flow: Unsuccessful BSNT Retrieval Service
=

3.2.4.2 Buffer Updating Service

The buffer updating service provides the SLS user with the ability to update the retransmission buffer
and collect messages that have not been successfully received by the remote side of the signalling link
during a sequenced changeover procedure. The SLS user specifies the FSNC (the forward sequence
number confirmed received by the remote end of the signalling link). The SLS provider uses the

2014-10-25 25

Chapter 3: SLI Services Definition

FSNC to purge successfully received messages from the retransmission buffer and then indicates the
remaining contents of the retransmission buffer and the transmission buffer to the SLS user.

The SLS user may also clear the retransmission buffer using the buffer clearing service before re-
trieving messages. This this case, the messages retrieved by the SLS provider will be the contents of
the transmission buffer. The combination of the two services are used to perform the time controlled
changeover procedure.

e SL_RETRIEVAL_REQUEST_AND_FSNC_REQ: The SL_RETRIEVAL_REQUEST_AND_FSNC_REQ message
is used by the SLS user to request the SLS provider update the retransmission buffer to re-
flect the value of the specified FSNC and retrieve and indicate the contents of the updated
retransmission buffer followed by the contents of the transmission buffer to the SLS user.

e SL_RETRIEVED_MESSAGE_IND: The SL_RETRIEVED_MESSAGE_IND message is used by the SLS
provider to indicate one message from the retransmission buffer or transmission buffer.

e SL_RETRIEVAL_COMPLETE_IND: The SL_RETRIEVAL_COMPLETE_IND message is used by the SLS
provider to indicate that the retrieval of messages from the retransmission buffer and transmis-
sion buffer is complete.

e SL_RETRIEVAL_NOT_POSSIBLE_IND: The SL_RETRIEVAL_NOT_POSSIBLE_IND message is used
by the SLS provider to indicate that the updating of the retransmission buffer to the specified
FSNC and retrieval of messages from the retransmission buffer and transmission buffer is not
possible. This may be due to hardware failure.

A successful invocation of the buffer updating service is illustrated in Figure 3.22.

-

SL_RETR_REQ_AND_FSNC
request

-

SL_RETRIEVED_MESSAGE
indication

-

SL_RETRIEVED_MESSAGE
indication

-

SL_RETRIEVAL_COMPLETE
indication

Figure 3.22: Message Flow: Successful Buffer Updating Service
N

An unsuccessful invocation of the buffer updating service is illustrated in Figure 3.23.

26 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

(7

SL_RETR_REQ_AND_FSNC
request

-

SL_RETR_NOT_POSSIBLE
indication

Figure 3.23: Message Flow: Unsuccessful Buffer Updating Service
- J

3.2.4.3 Buffer Clearing Service

The buffer clearing service provides the SLS user with the ability to request that all message buffers
be cleared (receive buffer, retransmission buffer, transmission buffer) and that the SLS provider
indicate when the receive and retransmission buffer are cleared. It also provides the SLS user with
the ability to clear only the retransmission buffer and receive and indication when the buffer is
cleared.

Clearing of all buffers is performed when the signalling link has been blocked (local or remote
processor outage) for a long duration and messages contained in the buffer are too old to be processed.
Clearing of the retransmission buffer is performed as part of the time-controlled changeover proce-
dure, when the value of the FSNC has not been received in a sequenced changeover message from
the adjacent signalling point.

e SL_CLEAR_BUFFERS_REQ: The SL_CLEAR_BUFFERS_REQ message is used by the SLS user to
request that all message buffers (receive, retransmit, transmit) be cleared.

e SL_CLEAR_RTB_REQ: The SL_CLEAR_RTB_REQ message is used by the SLS user to request that
only the retransmission buffer be cleared as part of a time-controlled changeover procedure.

e SL_RB_CLEARED_IND: The SL_RB_CLEARED_IND message is used by the SLS provider to indicate
when the receive buffer has been successfully cleared.

e SL_RTB_CLEARED_IND: The SL_RTB_CLEARED_IND message is used by the SLS provider to indi-
cate when the retransmission buffer has been successfully cleared.
A successful invocation of the buffer clearing service is illustrated in Figure 3.24 and Figure 3.25.
(N

SL_CLEAR_BUFFERS
request

-
SL_RB_CLEARED
indication

-

SL_RTB_CLEARED
indication

Figure 3.24: Message Flow: Successful Buffer Clearing Service
- J

2014-10-25 27

Chapter 3: SLI Services Definition

SL_CLEAR_RTB
request

-

SL_RTB_CLEARED
indication

Figure 3.25: Message Flow: Successful Buffer Clearing Service
N

3.2.5 Processor Outage Services

The processor outage services provide the SLS user with the ability to request a local processor
outage as well as being informed of a local or remote processor outage. The service primitives that
implement the processor outage services are described in detail in Section 4.2.5 [Processor Outage
Service Primitives], page 112.

3.2.5.1 Local Processor Outage Service

The local processor outage service provides the SLS user with the ability to both request a local
processor outage as well as be informed of a local processor outage. Local processor outage occurs
when the SLS user is unable to pass message signal units for transmission or accept received message
signal units, or the SLS provider is unable to deliver received message signal units or accept message
signal units for transmission. Local processor outage conditions can exist independently within the
SLS user and within the SLS provider.

e SL_LOCAL_PROCESSOR_OUTAGE_REQ: The SL_LOCAL_PROCESSOR_OUTAGE_REQ message is used
by the SLS user to specify that a local processor outage condition exists due to a condition
within the SLS user.

e SL_LOCAL_PROCESSOR_OUTAGE_IND: The SL_LOCAL_PROCESSOR_OUTAGE_IND message is used by
the SLS provider to indicate that a local processor outage condition exists due to a condition
within the SLS provider.

e SL_RESUME_REQ: The SL_RESUME_REQ message is used by the SLS use to specify that a local
processor outage condition no longer exists within the SLS user.

e SL_LOCAL_PROCESSOR_RECOVERED_IND: The SL_LOCAL_PROCESSOR_RECOVERED_IND message is
used by the SLS provider to indicate that a local processor outage condition no longer exists
within the SLS provider.

A successful invocation of the local processor outage service is illustrated in Figure 3.26.

28 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Services Definition

(7

SL_LOC_PROC_OUTAGE
request

SL_RESUME T
request SL_REM_PROC_OUTAGE
\ indication
SL_REM_PROC_RECOVERED
indication

SL_CONTINUE
request

| —

Figure 3.26: Message Flow: Successful Processor Qutage Service
k J

3.2.5.2 Remote Processor Outage Service

The remote processor outage service provides the SLS user with the ability to be informed of remote
processor outage conditions. Remote processor outage occurs when the remote SLS user is experi-
encing a local processor outage. Remote processor outage conditions can exist independent of local
processor outage conditions.

e SL_REMOTE_PROCESSOR_OUTAGE_IND: The SL_REMOTE_PROCESSOR_OUTAGE_IND message is used
by the SLS provider to indicate that a remote processor outage condition exists.

e SL_REMOTE_PROCESSOR_RECOVERED_IND: The SL_REMOTE_PROCESSOR_RECOVERED_IND message
is used by the SLS provider to indicate that a remote processor has recovered.

e SL_CONTINUE_REQ: The SL_CONTINUE_REQ message is used by the SLS user to request that a

signalling link continue from where it left off after a remote processor has recovered.

A successful indication of the remote processor outage service is illustrated in Figure 3.27.

2014-10-25 29

Chapter 3: SLI Services Definition

-

SL_LOC_PROC_OUTAGE SL_REM_PROC_OUTAGE
~indication indication
SL LOC PROC RECOVERED SL_REM_PROC_RECOVERED
N " indication indication
SL_CONTINUE
request

| —

Figure 3.27: Message Flow: Successful Processor Qutage Service
=

3.2.6 Link Option Management Service

The link option management service provides the SLS user with the ability to alter signalling link
options. The service primitives that implement the link option management services are described
in detail in Section 4.2.6 [Link Option Management Service Primitives], page 122.
e SL_OPTMGMT_REQ: The SL_OPTMGMT_REQ message is used by the SLS user to request that link
options be managed.
e SL_OPTMGMT_ACK: The SL_OPTMGMT_ACK message is used by the SLS provider to acknowledge
link option management actions.

A successful invocation of the link options management service is illustrated in Figure 3.28.

-

SL_OPTMGMT
request

-

SL_OPTMGMT
acknowledgement

Figure 3.28: Message Flow: Successful Link Options Management Service
-

3.2.7 Event Notification Service

The event notification service provides the SLS user with the ability to register with the SLS provider
to receive provider-specific event notifications. Event notifications normally correspond to man-
agement indications on the SS7 signalling link. The service primitives that implement the event
notification services are described in detail in Section 4.2.7 [Event Notification Service Primitives],
page 128.

30 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

SLI Services Definition

e SL_NOTIFY_REQ: The SL_NOTIFY_REQ message is used by the SLS user to register with the SLS

provider to receive specified event notifications.

e SL_NOTIFY_IND: The SL_NOTIFY_IND message is used by the SLS provider to indicate the

occurrence of registered events to the SLS user.

A successful invocation of the event notification service is illustrated in Figure 3.29.

-

Figure 3.29:
-

SL_NOTIFY
request

-

SL_NOTIFY
indication

-

SL_NOTIFY
indication

-

SL_NOTIFY
indication

Message Flow: Successful Fvent Notification Service

2014-10-25

31

Signalling Link Interface (SLI) SLI Primitives

4 SLI Primitives

4.1 Local Management Service Primitives

These service primitives implement the local management services (see Section 3.1 [Local Manage-
ment Services|, page 13).

4.1.1 Acknowledgement Service Primitives

These service primitives implement the acknowledgement service (see Section 3.1.1 [Acknowledge-
ment Service|, page 13).

4.1.1.1 LMI_OK_ACK

Description

This primitive is used to acknowledge receipt and successful service completion for primitives re-
quiring acknowledgement that have no confirmation primitive.

Format

This primitive consists of one M_PCPROTO message block, structured as follows:

typedef struct {
Imi_long I1mi_primitive;
Imi_long lmi_correct_primitive;
Imi_ulong 1lmi_state;

} 1mi_ok_ack_t;

Parameters
The service primitive contains the following parameters:
Imi_primitive
Indicates the service primitive type. Always LMI_0K_ACK.

Imi_correct_primitive
Indicates the service primitive that was received and serviced correctly. This field can
be one of the following values:

LMI_ATTACH_REQ
Attach request.

LMI_DETACH_REQ
Detach request.

Imi_state

Indicates the current state of the LMS provider at the time that the primitive was
issued. This field can be one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

2014-10-25 33

Chapter 4: SLI Primitives

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

State

This primitive is issued by the LMS provider in the LMI_ATTACH_PENDING or LMI_DETACH_PENDING
state.

New State

The new state is LMI_UNATTACHED or LMI_DISABLED, depending on thee primitive to which the
message is responding.

34 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.1.2 LMI_ERROR_ACK

Description

The error acknowledgement primitive is used to acknowledge receipt and unsuccessful service com-
pletion for primitives requiring acknowledgement.

Format

The error acknowledgement primitive consists of one M_PCPROTO message block, structured as follows:
typedef struct {
Imi_long 1lmi_primitive;
Imi_ulong 1lmi_errno;
Imi_ulong 1lmi_reason;
Imi_long lmi_error_primitive;
Imi_ulong 1lmi_state;
} 1mi_error_ack_t;

Parameters
The error acknowledgement primitive contains the following parameters:

Imi_primitive
Indicates the primitive type. Always LMI_ERROR_ACK.

Imi_errno

Indicates the LM error number. This field can have one of the following values:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

2014-10-25 35

Chapter 4: SLI Primitives

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

(LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

(LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

36

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

Imi_reason

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEQUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

(LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]
Start of device-specific error codes.

SLI Primitives

Indicates the reason for failure. This field is protocol-specific. When the Imi_errno
field is [LMI_SYSERR], the Imi_reason field is the UNIX error number as described in

errno(3).

Imi_error_primitive
Indicates the primitive that was in error. This field can have one of the following values:

2014-10-25

LMI_INFO_REQ
Information request.

LMI_ATTACH_REQ
Attach request.

LMI_DETACH_REQ
Detach request.

LMI_ENABLE_REQ
Enable request.

LMI_DISABLE_REQ
Disable request.

LMI_OPTMGMT_REQ
Options management request.

LMI_INFO_ACK
Information acknowledgement.

LMI_OK_ACK

Successful receipt acknowledgement.

LMI_ERROR_ACK
Error acknowledgement.

37

http://www.openss7.org/man2html?errno(3)

Chapter 4: SLI Primitives

LMI_ENABLE_CON
Enable confirmation.

LMI_DISABLE_CON
Disable confirmation.

LMI_OPTMGMT_ACK
Options Management acknowledgement.

LMI_ERROR_IND
Error indication.

LMI_STATS_IND
Statistics indication.

LMI_EVENT_IND
Event indication.

Imi_state

Indicates the state of the LMS provider at the time that the primitive was issued. This
field can have one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING
Waiting for attach.

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING
Waiting to send LMI_ENABLE_CON.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

LMI_DISABLE_PENDING
Waiting to send LMI_DISABLE_CON.

LMI_DETACH_PENDING
Waiting for detach.

State

This primitive can be issued in any state for which a local acknowledgement is not pending. The
LMS provider state at the time that the primitive was issued is indicated in the primitive.

New State

The new state remains unchanged.

38 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.2 Information Reporting Service Primitives

These service primitives implement the information reporting service (see Section 3.1.2 [Information
Reporting Service|, page 14).

4.1.2.1 LMI_INFO_REQ

Description

This LMS user originated primitive is issued by the LMS user to request that the LMS provider
return information concerning the capabilities and state of the LMS provider.

Format

The primitive consists of one M_PROTO or M_PCPROTO message block, structured as follows:
typedef struct {

Imi_ulong lmi_primitive;
} Imi_info_req_t;
Parameters
This primitive contains the following parameters:
Imi_primitive
Specifies the primitive type. Always LMI_INFO_REQ.
State

This primitive may be issued in any state but only when a local acknowledgement is not pending.

New State

The new state remains unchanged.

Response

This primitive requires the LMS provider to acknowledge receipt of the primitive as follows:

— Successful: The LMS provider is required to acknowledge receipt of the primitive and provide
the requested information using the LMI_INFO_ACK primitive.

— Unsuccessful (non-fatal errors): The LMS provider is required to negatively acknowledge the
primitive using the LMI_ERROR_ACK primitive, and include the reason for failure in the primitive.

Reasons for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

2014-10-25 39

Chapter 4: SLI Primitives

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_QUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOQT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

40

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERRI]

Start of device-specific error codes.

2014-10-25

SLI Primitives

41

Chapter 4: SLI Primitives

4.1.2.2 LMI_INFO_ACK

Description

This LMS provider originated primitive acknowledges receipt and successful processing of the LMI_
INFO_REQ primitive and provides the request information concerning the LMS provider.

Format

This message is formatted a one M_PROTO or M_PCPROTO message block, structured as follows:

typedef struct {
Imi_long lmi_primitive;

Imi_ulong
Imi_ulong
Imi_ulong
Imi_ulong
Imi_ulong
Imi_ulong
1mi_uchar

Imi_version;
1mi_state;
Imi_max_sdu;
Imi_min_sdu;
1mi_header_len;
Imi_ppa_style;
1lmi_ppa_addr[0];

} 1mi_info_ack_t;

Parameters

The information acknowledgement service primitive has the following parameters:

Imi_primitive

Indicates the service primitive type. Always LMI_INFO_ACK.

Imi_version Indicates the version of this specification that is being used by the LMS provider.

Imi_state Indicates the state of the LMS provider at the time that the information acknowledge-
ment service primitive was issued. This field can be one of the following values:

LMI_UNATTACHED

No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING

Waiting for attach.

LMI_UNUSABLE

Device cannot be used, STREAM in hung state.

LMI_DISABLED

PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING

Waiting to send LMI_ENABLE_CON.

LMI_ENABLED

Ready for use, awaiting primitive exchange.

LMI_DISABLE_PENDING

Waiting to send LMI_DISABLE_CON.

LMI_DETACH_PENDING

42

Waiting for detach.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

Imi_max_sdu
Indicates the maximum size of a Service Data Unit.

Imi_min_sdu
Indicates the minimum size of a Service Data Unit.

Imi_header_len
Indicates the amount of header space that should be reserved for placing LMS provider
headers.

Imi_ppa_style
Indicates the PPA style of the LMS provider. This value can be one of the following
values:

LMI_STYLE1
PPA is implicitly attached by open(2s).

LMI_STYLE2
PPA must be explicitly attached using LMI_ATTACH_REQ.

Imi_ppa_addr
This is a variable length field. The length of the field is determined by the length of
the M_PROTO or M_PCPROTO message block.

For a Style 2 driver, when Imi_ppa_style is LMI_STYLE2, and when in an attached state,
this field providers the current PPA associated with the stream; the length is typically
4 bytes.

For a Style 1 driver, when Imi_ppa_style is LMI_STYLE1, the length it 0 bytes.

State

This primitive can be issued in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

2014-10-25 43

http://www.openss7.org/man2html?open(2s)

Chapter 4: SLI Primitives

4.1.3 Physical Point of Attachment Service Primitives

These service primitives implement the physical point of attachment service (see Section 3.1.3 [Phys-
ical Point of Attachment Service], page 14).

4.1.3.1 LMI_ATTACH_REQ

Description

This LMS user originated primitive requests that the stream upon which the primitive is issued by
associated with the specified Physical Point of Attachment (PPA). This primitive is only applicable
to Style 2 LMS provider streams, that is, streams that return LMI_STYLE2 in the Imi_ppa_style field
of the LMI_INFO_ACK.

Format

This primitive consists of one M_PROTO message block, structured as follows:

typedef struct {
Imi_long lmi_primitive;
lmi_uchar 1lmi_ppal0];

} 1mi_attach_req_t;

Parameters
The attach request primitive contains the following parameters:

Imi_primitive
Specifies the service primitive type. Always LMI_ATTACH_REQ.

Imi_ppa Specifies the Physical Point of Attachment (PPA) to which to associated the Style 2
stream. This is a variable length identifier whose length is determined by the length of
the M_PROTO message block.

State

This primitive is only valid in state LMI_UNATTACHED and when a local acknowledgement is not
pending.

New State

Upon success, the new state is LMI_ATTACH_PENDING. Upon failure, the state remains unchanged.

Response
The attach request service primitive requires that the LMS provider respond as follows:

— Successful: The LMS provider acknowledges receipt of the primitive and successful outcome of
the attach service with a LMI_0K_ACK primitive. The new state is LMI_DISABLED.

— Unsuccessful (non-fatal errors): The LMS provider acknowledges receipt of the primitive and
failure of the attach service with a LMI_ERROR_ACK primitive containing the reason for failure.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

44 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[(LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOT]
DLE EOT detected.

2014-10-25

SLI Primitives

45

Chapter 4: SLI Primitives

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]

Start of device-specific error codes.

46

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.3.2 LMI_DETACH_REQ

Description

This LMS user originated primitive request that the stream upon which the primitive is issued be
disassociated from the Physical Point of Appearance (PPA) to which it is currently attached. This
primitive is only applicable to Style 2 LMS provider streams, that is, streams that return LMI_STYLE2
in the Imi_ppa_style field of the LMI_INFO_ACK.

Format

The detach request service primitive consists of one M_PROTO message block, structured as follows:
typedef struct {

Imi_long lmi_primitive;
} 1mi_detach_req_t;
Parameters
The detach request service primitive contains the following parameters:
Imi_primitive
Specifies the service primitive type. Always LMI_DETACH_REQ.
State
This primitive is valid in the LMI_DISABLED state and when no local acknowledgement is pending.

New State
Upon success, the new state is LMI_DETACH_PENDING. Upon failure, the state remains unchanged.

Response
The detach request service primitive requires that the LMS provider respond as follows:

— Successful: The LMS provider acknowledges receipt of the primitive and successful outcome of
the detach service with a LMI_OK_ACK primitive. The new state is LMI_UNATTACHED.

— Unsuccessful (non-fatal errors): The LMS provider acknowledges receipt of the primitive and
failure of the detach service with a LMI_ERROR_ACK primitive containing the reason for failure.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

2014-10-25 47

Chapter 4: SLI Primitives

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_QUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOQT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

48

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERRI]

Start of device-specific error codes.

2014-10-25

SLI Primitives

49

Chapter 4: SLI Primitives

4.1.4 Initialization Service Primitives

Initialization service primitives allow the LMS user to enable or disable the protocol service interface.
Enabling the protocol service interface may require that some action be taken to prepare the protocol
service interface for use or to remove it from use. For example, where the PPA corresponds to a
signalling data link identifier as defined in Q.704, it may be necessary to perform switching to connect
or disconnect the circuit identification code associated with the signalling data link identifier.
These service primitives implement the initialization service (see Section 3.1.4 [Initialization Service],
page 16).

4.1.4.1 LMI_ENABLE_REQ

Description

This LMS user originated primitive request that the LMS provider perform the actions necessary to
enable the protocol service interface and confirm that it is enabled. This primitive is applicable to
both styles of PPA.

Format

The enable request service primitive consists of one M_PROTO message block, structured as follows:
typedef struct {
Imi_long lmi_primitive;
1mi_uchar 1lmi_rem[0];
} 1mi_enable_req_t;

Parameters
The enable request service primitive contains the following parameters:
Imi_primitive

Specifies the service primitive type. Always LMI_ENABLE_REQ.

Imi_rem Specifies a remote address to which to connect the PPA. The need for and form of this
address is provider-specific. The length of the field is determined by the length of the
M_PROTO message block. This remote address could be a circuit identification code, an
IP address, or some other form of circuit or channel identifier.

State
This primitive is valid in the LMI_DISABLED state and when no local acknowledgement is pending.

New State
Upon success the new state is LMI_ENABLE_PENDING. Upon failure, the state remains unchanged.

Response
The enable request service primitive requires that the LMS provider acknowledge receipt of the
primitive as follows:
— Successful: When successful, the LMS provider acknowledges successful completion of the en-
able service with an LMI_ENABLE_CON primitive. The new state is LMI_ENABLED.
— Unsuccessful (non-fatal errors): When unsuccessful, the LMS provider acknowledges the failure
of the enable service wtih an LMI_ERROR_ACK primitive containing the error. The new state
remains unchanged.

50 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

Reasons for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

(LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]
Primitive not supported by this device.

[LMI_QUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

2014-10-25 ol

Chapter 4: SLI Primitives

[LMI_DLE_EOT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEQUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]
Start of device-specific error codes.

52 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.4.2 LMI_ENABLE_CON

Description

This LMS provider originated primitive is issued by the LMS provider to confirm the successful
completion of the enable service.

Format

The enable confirmation service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong Imi_state;

} 1lmi_enable_con_t;

Parameters
The enable confirmation service primitive contains the following parameters:
Imi_primitive

Indicates the service primitive type. Always LMI_ENABLE_CON.

Imi_state Indicates the state following issuing the enable confirmation primitive. This field can
take on one of the following values:

LMI_ENABLED
Ready for use, awaiting primitive exchange.

State
This primitive is issued by the LMS provider in the LMI_ENABLE_PENDING state.

New State
The new state is LMI_ENABLED.

2014-10-25 33

Chapter 4: SLI Primitives

4.1.4.3 LMI_DISABLE_REQ

Description

This LMS user originated primitive requests that the LMS provider perform the actions necessary
to disable the protocol service interface and confirm that it is disabled. The primitive is applicable
to both styles of PPA.

Format
The disable request service primitive consists of one M_PROTO message block, structured as follows:

typedef struct {

Imi_long lmi_primitive;

} 1lmi_disable_req_t;
Parameters
The disable request service primitive contains the following parameters:
Imi_primitive

Specifies the service primitive type. Always LMI_DISABLE_REQ.

State

The disable request service primitive is valid in the LMI_ENABLED state and when no local acknowl-
edgement is pending.

New State
Upon success, the new state is LMI_DISABLE_PENDING. Upon failure, the state remains unchanged.

Response

The disable request service primitive requires the LMS provider to acknowledge receipt of the prim-
itive as follows:

— Successful: When successful, the LMS provider acknowledges successful completion of the dis-
able service with an LMI_DISABLE_CON primitive. The new state is LMI_DISABLED.

— Unsuccessful (non-fatal errors): When unsuccessful, the LMS provider acknowledges the failure
of the disable service with an LMI_ERROR_ACK primitive containing the error. The new state
remains unchanged.

Reasons for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

54 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_QUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOQT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

2014-10-25

SLI Primitives

%)

Chapter 4: SLI Primitives

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERRI]

Start of device-specific error codes.

o6

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.4.4 LMI_DISABLE_CON

Description

This LMS provider originated primitive is issued by the LMS provider to confirm the successful
completion of the disable service.

Format

The disable confirmation service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong Imi_state;

} 1mi_disable_con_t;

Parameters

The disable confirmation service primitive contains the following parameters:

Imi_primitive
Indicates the service primitive type. Always LMI_DISABLE_CON.

Imi_state Indicates the state following issuing the disable confirmation primitive. This field can
take on one of the following values:

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

State
This primitive is issued by the LMS provider in the LMI_DISABLE_PENDING state.

New State
The new state is LMI_DISABLED.

2014-10-25 o7

Chapter 4: SLI Primitives

4.1.5 Options Management Service Primitives

The options management service primitives allow the LMS user to negotiate options with the LMS
provider, retrieve the current and default values of options, and check that values specified for options
are correct.

The options management service primitive implement the options management service (see
Section 3.1.5 [Options Management Service|, page 17).

4.1.5.1 LMI_OPTMGMT_REQ

Description

This LMS user originated primitive requests that LMS provider options be managed.

Format

The option management request service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1lmi_opt_length;
Imi_ulong 1lmi_opt_offset;
Imi_ulong 1lmi_mgmt_flags;
} 1lmi_optmgmt_req_t;

Parameters

The option management request service primitive contains the following parameters:

Imi_primitive
Specifies the service primitive type. Always LMI_OPTMGMT_REQ.

Imi_opt_length
Specifies the length of the options.

Imi_opt_offset
Specifies the offset, from the beginning of the M_PROTO message block, of the start of
the options.

Imi_mgmt_flags
Specifies the management flags which determine what operation the LMS provider is
expected to perform on the specified options. This field can assume one of the following
values:

LMI_NEGOTIATE
Negotiate the specified value of each specified option and return the ne-
gotiated value.

LMI_CHECK Check the validity of the specified value of each specified option and return
the result. Do not alter the current value assumed by the LMS provider.

LMI_DEFAULT
Return the default value for the specified options (or all options). Do not
alter the current value assumed by the LMS provider.

o8 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

LMI_CURRENT
Return the current value for the specified options (or all options). Do not
alter the current value assumed by the LMS provider.

State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Response

The option management request service primitive requires the LMS provider to acknowledge receipt
of the primitive as follows:

— Successful: Upon success, the LMS provider acknowledges receipt of the service primitive and
successful completion of the options management service with an LMI_QOPTMGMT_ACK primitive
containing the options management result. The state remains unchanged.

— Unsuccessful (non-fatal errors): Upon failure, the LMS provider acknowledges receipt of the
service primitive and failure to complete the options management service with an LMI_ERROR_
ACK primitive containing the error. The state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

2014-10-25 99

Chapter 4: SLI Primitives

[LMI_EVENT]

Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EOT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

(LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]

Connection went unanswered.

(LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

60

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]

Start of device-specific error codes.

2014-10-25

SLI Primitives

61

Chapter 4: SLI Primitives

4.1.5.2 LMI_OPTMGMT_ACK

Description

This LMS provider originated primitive is issued by the LMS provider upon successful completion
of the options management service. It indicates the outcome of the options management operation

requested by

Format

the LMS user in a LMI_OPTMGMT_REQ primitive.

The option management acknowledgement service primitive consists of one M_PCPROTO message
block, structured as follows:
typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1mi_opt_length;
Imi_ulong 1lmi_opt_offset;
Imi_ulong 1mi_mgmt_flags;
} 1mi_optmgmt_ack_t;

Parameters

The option management acknowledgement service primitive contains the following parameters:

Imi_primitive

Indicates the service primitive type. Always LMI_OPTMGMT_ACK.

Imi_opt_length

Indicates the length of the returned options.

Imi_opt_offset

Indicates the offset of the returned options from the start of the M_PCPROTO message
block.

Imi_mgmt_flags

62

Indicates the returned management flags. These flags indicate the overall success of
the options management service. This field can assume one of the following values:
LMI_SUCCESS
The LMS provider succeeded in negotiating or returning all of the options
specified by the LMS user in the LMI_OPTMGMT_REQ primitive.
LMI_FAILURE
The LMS provider failed to negotiate one or more of the options specified
by the LMS user.

LMI_PARTSUCCESS
The LMS provider negotiated a value of lower quality for one or more of
the options specified by the LMS user.

LMI_READONLY
The LMS provider failed to negotiate one ore more of the options specified
by the LMS user because the option is treated as read-only by the LMS
provider.

LMI_NOTSUPPORT
The LMS provider failed to recognize one or more of the options specified
by the LMS user.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

State
This primitive is issued by the LMS provider in direct response to an LMI_0PTMGMT_REQ primitive.

New State

The new state remains unchanged.

Rules

The LMS provider follows the following rules when processing option management service requests:

When the Imi_mgmt_flags field in the LMI_OPTMGMT _REQ primitive is set to LMI_NEGOTIATE, the
LMS provider will attempt to negotiate a value for each of the options specified in the request.
When the flags are LMI_DEFAULT, the LMS provider will return the default values of the specified
options, or the default values of all options known to the LMS provider if no options were
specified.

When the flags are LMI_CURRENT, the LMS provider will return the current values of the specified
options, or all options.

When the flags are LMI_CHECK, the LMS provider will attempt to negotiate a value for each of
the options specified in the request and return the resulg of the negotiation, but will not affect
the current value of the option.

2014-10-25 63

Chapter 4: SLI Primitives

4.1.6 Event Reporting Service Primitives

The event reporting service primitives allow the LMS provider to indicate asynchronous errors,
events and statistics collection to the LMS user.

These service primitives implement the event reporting service (see Section 3.1.8 [Event Reporting
Service], page 19).

4.1.6.1 LMI_ERROR_IND

Description

This LMS provider originated service primitive is issued by the LMS provider when it detects and
asynchronous error event. The service primitive is applicable to all styles of PPA.

Format

The error indication service primitive consists of one M_PROTO message block, structured as follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1lmi_errno;
Imi_ulong 1lmi_reason;
Imi_ulong 1lmi_state;

} Imi_error_ind_t;

Parameters
The error indication service primitive contains the following parameters:
Imi_primitive

Indicates the service primitive type. Always LMI_ERROR_IND.

Imi_errno Indicates the LMI error number describing the error. This field can have one of the
following values:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

64 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

[LMI_BADPRIM]
Unrecognized primitive.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EQOT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

2014-10-25

SLI Primitives

65

Chapter 4: SLI Primitives

Imi_reason

Imi_state

66

[LMI_HDLC_IDLE]
HDLC line went idle.

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

[LMI_QUIESCENT]
Line being reassigned.

(LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

[LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]
Start of device-specific error codes.

Indicates the reason for failure. This field is protocol-specific. When the Imi_errno
field is [LMI_SYSERR], the Imi_reason field is the UNIX error number as described in
errno(3).

Indicates the state of the LMS provider at the time that the primitive was issued. This
field can have one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING
Waiting for attach.

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING
Waiting to send LMI_ENABLE_CON.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

LMI_DISABLE_PENDING
Waiting to send LMI_DISABLE_CON.

Version 1.1 Rel. 7.20141001

http://www.openss7.org/man2html?errno(3)

Signalling Link Interface (SLI) SLI Primitives

LMI_DETACH_PENDING
Waiting for detach.

State

This primitive can be issued in any state for which a local acknowledgement is not pending. The
LMS provider state at the time that the primitive was issued is indicated in the primitive.

New State

The new state remains unchanged.

2014-10-25 67

Chapter 4: SLI Primitives

4.1.6.2 LMI_STATS_IND

Description

This LMS provider originated primitive is issued by the LMS provider to indicate a periodic statistics
collection event. The service primitive is applicable to all styles of PPA.

Format
The statistics indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong Imi_interval;
Imi_ulong Imi_timestamp;
} 1mi_stats_ind_t;
Following this structure within the M_PROTO message block is the provider-specific statistics.

Parameters
The statistics indication service primitive contains the following parameters:
Imi_primitive

Indicates the service primitive type. Always LMI_STATS_IND.

Imi_interval
Indicates the statistics collection interval to which the statistics apply. This interval is
specified in milliseconds.

Imi_timestamp
Indicates the UNIX time (from epoch) at which statistics were collected. The time-
stamp is given in milliseconds from epoch.

State

This service primitive may be issued by the LMS provider in any state in which a local acknowl-
edgement is not pending.

New State

The new state remains unchanged.

68 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.1.6.3 LMI_EVENT_IND

Description

This LMS provider originated primitive is issued by the LMS provider to indicate an asynchronous
event. The service primitive is applicable to all styles of PPA.

Format

The event indication service primitive consists of one M_PROTO message block, structured as follows:

typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1lmi_objectid;
Imi_ulong Imi_timestamp;
Imi_ulong 1mi_severity;
} 1mi_event_ind_t;
Following this structure within the M_PROTO message block is the provider-specific event information.

Parameters
THe event indication service primitive contains the following parameters:
Imi_primitive

Indicates the service primitive type. Always LMI_EVENT_IND.

Imi_objectid
Indicates the provider-specific object identifier that identifies the managed object to
which the event is associated.

Imi_timestamp
Indicates the UNIX time from epoch (in milliseconds).

Imi_severity

Indicates the provider-specific severity of the event.

State

This service primitive can be issued by the LMS provider in any state where a local acknowledgement
is not pending. Normally the LMS provider must be in the LMI_ENABLED state for event reporting
to occur.

New State

The new state remains unchanged.

2014-10-25 69

Chapter 4: SLI Primitives

4.2 Protocol Service Primitives

Protocol service primitives implement the Signalling Link interface protocol. Protocol service primi-
tives provide the SLS user with the ability to initialize the link, transfer data on the link, request and
receive reports of receive and transmit congestion, restore failed signalling links, handle processor
outage conditions, manage options and register for and receive event notifications.

These service primitives implement the protocol services (see Section 3.2 [Protocol Services],
page 19).

4.2.1 Link Initialization Service Primitives

The link initialization primitives permit the SLS user to power on the signalling data terminal,
specify emergency or normal alignment, start the signalling link and bring it into service, and stop
the signalling link or be informed of link failures.

These service primitives implement the link initialization services (see Section 3.2.1 [Link Initializa-
tion Services], page 19).

4.2.1.1 SL_POWER_ON_REQ

Description

The SLS user originated service primitive request that the SLS provider power on the signalling data
terminal. Not all signalling data terminals can be powered on independent of the existence of the
signalling link interface. Software signalling data terminals will mark idle on signalling links until
they are powered on, after which they will idle FISUs.

Format

The power on service primitive consists of one M_PROTO message block, structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_power_on_req_t;

Parameters
The power on service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_POWER_ON_REQ.

State

This primitive is only valid in the LMI_ENABLED management state. This primitive is valid in the
SL_STATE_POWER_OFF link state; however, when issued in another link state the primitive is ignored
and does not generate a non-fatal error.

New State
The new link state is SL_STATE_OUT_OF_SERVICE.

Rules

70 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

Response
The power on service primitive does not require receipt acknowledgement from the SLS provider.
— Successful: When successful, the power on service primitive does not require acknowledgement.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider indicates failure using
an LMI_ERROR_ACK primitive containing the error.

Note that the SLS provider should ignore this primitive, and not generate a non-fatal error, when
the management interface is in the LMI_ENABLED state and the link state is other than SL_STATE_
POWER_OFF.

Reason for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 71

Chapter 4: SLI Primitives

4.2.1.2 SL_LEMERGENCY_REQ

Description

The emergency request service primitive provides the SLS user with the ability to specify that
emergency alignment procedures should be used on the current or next alignment of the signalling
link. Emergency alignment procedures a shorter in duration (shorter proving period) than normal
alignment procedures.

Format

The emergency request service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_emergency_req_t;

Parameters
The emergency request service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_EMERGENCY_REQ.
State

This primitive is only valid in the LMI_ENABLED management state. The primitive is valid in any
link state.

New State

The management and link state remains unchanged.

Response

The emergency request service primitive does not require receipt acknowledgement.

— Successful: When successful, the emergency request service primitive does not require receipt
acknowledgement.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive with an LMI_ERROR_ACK primitive containing the error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

72 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 73

Chapter 4: SLI Primitives

4.2.1.3 SL_LEMERGENCY_CEASES_REQ

Description

The emergency ceases request service primitive provides the SLS user with the ability to specify
that normal alignment procedures should be used on the current or next alignment of the signalling
link. Normal alignment procedures are longer in duration (longer proving period) than emergency
alignment procedures.

Format

The emergency ceases request primitive consists of one M_PROTO or M_PCPROTO message block, struc-
tured as follows:

typedef struct {
sl_long sl_primitive;

} sl_emergency_ceases_req_t;
Parameters
The emergency ceases request service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_EMERGENCY_CEASES_REQ.

State

This primitive is only valid in the LMI_ENABLED management state. The primitive is valid in any
link state.

New State

The management and link state remains unchanged.

Response
The emergency ceases request service primitive does not require receipt acknowledgement.

— Successful: When successful, the emergency ceases request service primitive does not require
receipt acknowledgement.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive with an LMI_ERROR_ACK primitive containing the error.

Reason for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

74 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 (0]

Chapter 4: SLI Primitives

4.2.1.4 SL_START_REQ

Description

The start request service primitive allows the SLS user to request that a signalling link be aligned
and brought into service by the SLS provider.

Format
The start request service primitive consists of one M_PROTO or M_PCPROTO message block, structured
as follows:

typedef struct {
sl_long sl_primitive;
} sl_start_req_t;

Parameters
The start request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_START_REQ.

State

This primitive is only valid in management state LMI_ENABLED. This primitive is valid in link state
SL_STATE_QOUT_OF_SERVICE.

New State
The new link state is SL_STATE_INITIAL_ALIGNMENT.

Response
The start request service primitive requires a response from the SLS provider indicating the success
or failure of the start request.

— Successful link start: When successful, the SLS provider indicates success with the SL_IN_
SERVICE_IND primitive indicating that the signalling link has been brought into service. A
significant delay in time might exist between the request and the in-service indication. This
results in the SL_STATE_IN_SERVICE link state.

— Unuccessful link start: When unsuccessful, the SLS provider indicates failure to bring the link
in-service with the SL_OUT_OF_SERVICE_IND primitive, containing the reason for failure. This
results int the SL_STATE_OUT_OF_SERVICE link state.

— Non-fatal errors: Non-fatal errors are indicated by the SLS provider using the LMI_ERROR_ACK
primitive with the error number and reason contained.

When the management state is LMI_ENABLED, but the link state is other than SL_STATE_QUT_OF_
SERVICE and SL_STATEPOWER_OFF, the SLS provider should ignore the SL_START_REQ primitive and
not generate a non-fatal error.

Reason for Failure
Applicable reasons for unsuccessful link start are as follows:

[SL_FAIL_UNSPECIFIED]
The signalling link failed for an unspecified reason.

76 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[SL_FAIL_CONG_TIMEQUT]
The signalling link failed because of congestion timeout (T6 expiry).

[SL_FAIL_ACK_TIMEQOUT]
The signalling link failed because of acknowledgement timeout (T7 expiry).

[SL_FAIL_ABNORMAL_BSNR]
The signalling link failed because of receipt of an abnormal backward sequence number
(BSNR).

[SL_FAIL_ABNORMAL_FIBR]
The signalling link failed because of receipt of an abnormal forward indicator bit
(FIBR).

[SL_FAIL_SUERM_EIM]
The signalling link failed because the SUERM or EIM error rate threshold was ex-
ceeded.

[SL_FAIL_ALIGNMENT_NOT_POSSIBLE]
The signalling link failed because the AERM threshold was exceeded and the maximum
number of proving periods was exceeded.

[SL_FAIL_RECEIVED_SIO]
The signalling link failed due to receipt of an SIO during or after alignment.

[SL_FAIL_RECEIVED_SIN]
The signalling link failed due to receipt of an SIN after proving.

[SL_FAIL_RECEIVED_SIE]
The signalling link failed due to receipt of an SIE after proving.

[SL_FAIL_RECEIVED_SIOS]
The signalling link failed due to receipt of an SIOS.

[SL_FAIL_T1_TIMEOUT]
The signalling link failed due to failure to align with remote (T1 timeout).
Applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_QUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 7

Chapter 4: SLI Primitives

4.2.1.5 SL_IN_SERVICE_IND

Description

The in-service indication service primitive is issued by the SLS provider to indicate to the SLS user
that a previously invoked link start has successfully aligned and brought the signalling link into
service.

Format

The in-service indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
sl_long sl_primitive;
} sl_in_service_ind_t;

Parameters
The in-service indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_IN_SERVICE_IND.
State

This primitive is only issued in the LMI_ENABLED management state. This primitive is only issued
in the SL_STATE_ALIGNED_READY state.

New State
The new link state is SL_STATE_IN_SERVICE.

Rules
The following rules are observed by the SLS provider when issuing the in-service indication primitive:

— The primitive is only issued in response to a SL_START_REQ primitive that was issued from the
SL_STATE_QUT_OF_SERVICE state.

— The primitive is only issued once the signalling link has achieved the SL_STATE_IN_SERVICE
state.

78 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.1.6 SL_.OUT_OF_SERVICE_IND

Description

The out-of-service indication service primitive is issued by the SLS provider to indicate to the
SLS user that a previously invoked link start has been unsuccessful, or that a previously in-service
signalling link has failed.

Format

The out-of-service indication service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_reason;

} sl_out_of_service_ind_t;

Parameters
The out-of-service indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_OUT_OF_SERVICE_IND.

sl_timestamp
Indication the time of the failure. The time is indicated as UNIX time from epoch in
milliseconds.

sl_reason Indicates the reason for failure to start the link or the reason for failure of an in-service
link. The sl_reason field can assume one of the following values:

SL_FAIL_UNSPECIFIED
The signalling link failed for an unspecified reason.

SL_FAIL_CONG_TIMEOUT
The signalling link failed because of congestion timeout (T6 expiry).

SL_FAIL_ACK_TIMEQUT
The signalling link failed because of acknowledgement timeout (T7 ex-

piry).
SL_FAIL_ABNORMAL_BSNR

The signalling link failed because of receipt of an abnormal backward
sequence number (BSNR).

SL_FATIL_ABNORMAL_FIBR
The signalling link failed because of receipt of an abnormal forward indi-
cator bit (FIBR).

SL_FAIL_SUERM_EIM
The signalling link failed because the SUERM or EIM error rate threshold
was exceeded.

SL_FAIL_ALIGNMENT_NOT_POSSIBLE
The signalling link failed because the AERM threshold was exceeded and
the maximum number of proving periods was exceeded.

2014-10-25 79

Chapter 4: SLI Primitives

SL_FAIL_RECEIVED_SIO
The signalling link failed due to receipt of an SIO during or after align-
ment.

SL_FAIL_RECEIVED_SIN
The signalling link failed due to receipt of an SIN after proving.

SL_FAIL_RECEIVED_SIE
The signalling link failed due to receipt of an SIE after proving.

SL_FAIL_RECEIVED_SIOS
The signalling link failed due to receipt of an SIOS.

SL_FAIL_T1_TIMEOUT
The signalling link failed due to failure to align with remote (T1 timeout).

State

This primitive is only issued in the LMI_ENABLED management state. This primitive is only issued
from a link state other than SL_STATE_OUT_OF_SERVICE or SL_STATE_POWER_OFF.

New State
The new link state is SL_STATE_OUT_OF_SERVICE.

Rules

The following rules are observed by the SLS provider when issuing the out-of-service indication
primitive:

— The primitive is only issued in response to a SL_START_REQ primitive that was issued from the

SL_STATE_OUT_OF_SERVICE state, or as a result of a link failure from the SL_STATE_IN_SERVICE
state.

— The primitive is only issued once the signalling link has achieved the SL_STATE_OUT_OF _SERVICE
state.

80 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.1.7 SL_STOP_REQ

Description

The stop request primitive allows the SLS user to request that a signalling link be brought out of
service by the SLS provider.

Format

The stop request service primitive consists of one M_PROTO or M_PCPROTO message block, structured
as follows:
typedef struct {
sl_long sl_primitive;
} sl_stop_req_t;

Parameters
The stop request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_STOP_REQ.

State

This primitive is only valid in management state LMI_ENABLED. This primitive is valid in link state
SL_STATE_INITIAL_ALIGNMENT, SL_STATE_ALIGNED_READY, SL_STATE_ALIGNED_NOT_READY or SL_
STATE_IN_SERVICE.

New State
The new link state is SL_STATE_OUT_OF_SERVICE.

Response

The stop request service primitive does not require receipt acknowledgement from the SLS provider.

— Successful: When successful, the SLS provider does not need to acknowledge the stop request
service primitive. The resulting link state is SL_STATE_0UT_OF _SERVICE.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the stop request service primitive with a LMI_ERROR_ACK primitive containing the error and
reason. The resulting state is unchanged.

When the management state is LMI_ENABLED, but the link state is SL_STATE_POWER_OFF or SL_
STATE_OUT_OF _SERVICE, the SLS provider should ignore the SL_STOP_REQ primitive and not generate
a non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

2014-10-25 81

Chapter 4: SLI Primitives

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

82

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.2 Data Transfer Service Primitives

Data transfer service primitives provider the SLS user with the ability to send and receive message
signal units on an in-service signalling link. These service primitives implement the data transfer
service (see Section 3.2.2 [Data Transfer Service], page 22).

4.2.2.1 SL_.PDU_REQ

Description

The PDU request service primitive provides the SLS user with the ability to request that a message
signal unit be transmitted on an in-service signalling link.

Format

The PDU request service primitive consists of zero or one M_PROTO message block and one M_DATA
message block containing the message signal unit. The structure of the M_PROTO message block is
as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;

} sl_pdu_req_t;

Parameters

The PDU request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_PDU_REQ.

sl_mp Specifies the message priority for the message signal unit. Message priorities are
provider-specific, but are typically between 0 and 3. This message priority field is
only applicable to SS7 protocol variants that place message priority bits in a field of
the Level 2 header (TTC).

State
This primitive is only valid in the LMI_ENABLED management state, and is valid from the SL_STATE_
IN_SERVICE link state.

New State

The management and link state remains unchanged.

Rules

The following rules are observed when issuing the PDU request service primitive:

— The M_PROTO message block is optional and is only necessary for the TTC SS7 protocol variant,
or an SS7 protocol variant which places message priority bits into the Level 2 header.

— The PDU request service primitive does not require a response from the SLS provider.

Response

The PDU request service primitive is not acknowledged.

2014-10-25 83

Chapter 4: SLI Primitives

4.2.2.2 SL_PDU_IND

Description

The PDU indication service primitive provides the SLS user with the ability to receive message
signal units from a signalling link.

Format

The PDU indication service primitive consists of zero or more M_PROTO message blocks and one
or more M_DATA message blocks containing the message signal unit. The structure of the M_PROTO
message block is as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;

} sl_pdu_ind_t;

Parameters
The PDU indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_PDU_IND.

sl_mp Indicates the message priority of the message signal unit. Message priorities are
provider-specific, but are typically between 0 and 3. This message priority field is
only applicable to SS7 protocol variants that place message priority bits in a field of
the Level 2 header (e.g. TTC).

State

This primitive is only valid in the LMI_ENABLED management state, and is valid from the SL_STATE_
IN_SERVICE link state.

New State

The management and link states remain unchanged.

Rules
The following rules are observed when issuing the PDU indication service primitive:

— The M_PROTO message block is optional and is only necessary for the TTC SS7 protocol variant,
or an SS7 protocol variant that passes message priority bits from the Level 2 header.

— The PDU indication service primitive does not require a response from the SLS user.

84 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.3 Congestion Service Primitives

These service primitives implement the congestion services (see Section 3.2.3 [Congestion Services],
page 23).

4.2.3.1 SL_LINK_CONGESTED_IND

Description

The link congested indication service primitive provides the SLS provider with the ability to inidicate
link transmit congestion onset at a congestion level to the SLS user.

Format

The link congested indication service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_cong_status; /* congestion status */
sl_ulong sl_disc_status; /* discard status */
} sl_link_cong_ind_t;

Parameters
The link congested indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_LINK_CONGESTED_IND.

sl_timestamp
Indicates the time at which the change in congestion status occurred. This is UNIX
time from epoch timestamp in milliseconds.

sl_cong_status
Indicates the congestion status. The congestion status is the maximum level at which
transmit congestion onset has occurred. This field is provider-specific but can typically
take on a value from 0 to 3. The SLS user should signal congestion to the senders of
messages with message priority less than the congestion status but should not discard
messages of that priority.

sl_disc_status
Indicates the discard status. The discard status is the maximum level at which transmit
congestion discard has occurred. This field is provider-specific but can typically take
on a value from 0 to 3. The SLS user should signal congestion to senders of message
with message priority less than the discard status and should also discard messages of
that priority.

State

This primitive is only issued in the LMI_ENABLED management state and the SL_STATE_IN_SERVICE
link state.

New State

The management and link state remain unchanged.

2014-10-25 85

Chapter 4: SLI Primitives

Rules

The SLS provider observes the following rules when issuing the link congested indication service
primitive:

— The service primitive is only issued from the SL_STATE_IN_SERVICE link state.

— The service primitive is only issued from the LMI_ENABLED management state.

— The service primitive is only issued when the congestion status or discard status increases
from the value that was last indicated with either a SL_LINK_CONGESTION_IND or SL_LINK_
CONGESTION_CEASED_IND primitive.

Response

The SLS user upon receiving this primitive should avoid sending messages of message priority less
than the transmit congestion status, and must not send messages of message priority less than the
discard status. The SLS provider does not actually discard messages with message priority less than
the discard status: it is the responsibility of the SLS user to discard lower priority messages.
Typically the SLS user is the SS7 Message Transfer Part. The SS7 MTP issues congestion indica-
tions to local MTP-Users and issues transfer-controlled messages to sending signalling points when
transmit congestion onset occurs. When transmit congestion discard occurs, the SS7 MTP contin-
ues to issue congestion indications to local MTP-User and transfer-controlled message to sending
signalling points, but also discards messages with insufficient priority for the discard level.

86 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.3.2 SL_LINK_CONGESTION_CEASED_IND

Description

The link congestion ceased indication service primitive allows the SLS provider to indicate to the
SLS user when transmit congestion abates.

Format

The link congestion ceased service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_cong_status; /* congestion status */
sl_ulong sl_disc_status; /* discard status */
} sl_link_cong_ceased_ind_t;

Parameters
The link congestion ceased service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_CONGESTION_CEASED_IND.

sl_timestamp
Indicates the time at which the change in transmit congestion status occurred. This is
UNIX time from epoch timestamp in milliseconds.

sl_cong_status
Indicates the congestion status. The congestion status is the maximum level at which
transmit congestion onset has occurred. This field is provider-specific but can typically
take on a value from 0 to 3. The SLS user should signal congestion to the senders of
messages with message priority less than the congestion status but should not discard
messages of that priority.

sl_disc_status
Indicates the discard status. The discard status is the maximum level at which transmit
congestion discard has occurred. This field is provider-specific but can typically take
on a value from 0 to 3. The SLS user should signal congestion to senders of message
with message priority less than the discard status and should also discard messages of
that priority.

State

This primitive is only issued in the LMI_ENABLED management state and the SL_STATE_IN_SERVICE
link state.

New State

The management and link state remain unchanged.

Rules

The SLS provider observes the following rules when issuing the link congestion ceased indication
service primitive:

2014-10-25 87

Chapter 4: SLI Primitives

— The service primitive is only issued from the SL_STATE_IN_SERVICE link state.
— The service primitive is only issued from the LMI_ENABLED management state.

— The service primitive is only issued when the congestion status or discard status decreases
from the value that was last indicated with either a SL_LINK_CONGESTION_IND or SL_LINK_
CONGESTION_CEASED_IND primitive.

Response

The SLS user upon receiving this primitive should cease discarding or sending congestion indications
or transfer-controlled messages for the congestion level which has abated.

88 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.3.3 SL_.CONGESTION_DISCARD_REQ

Description

The congestion discard request service primitive is used by the SLS user to specify receive congestion
discard.

Normally an SLS user will first signal receive congestion onset with the SL_CONGESTION_ACCEPT_
REQ primitive before signalling receive congestion discard with this SL_CONGESTION_DISCARD_REQ
primitive. The congestion discard service primitive requests that the SLS provider discard all new
undelivered message signal units and not acknowledge them to the remote SLS provider. The SLS
provider will also generate receive congestion indications to the remote SLS provider (i.e. will
periodically generate SIB).

Format

The congestion discard request service primitive consists of one M_PCPROTO message block, structured
as follows:

typedef struct {
sl_long sl_primitive;
} sl_cong_discard_req_t;

Parameters
The congestion discard request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_CONGESTION_DISCARD_REQ.

State

This primitive is valid only in LMI_ENABLED management state. It is valid in SL_STATE_IN_SERVICE
link state.

New State

The link and management state remains the same.

Rules
The SLS user should observe the following rules when issuing the congestion discard request service
primitive:
— The SLS user should not generate a congestion discard request unless a congestion accept
request was previously issued.

— The SLS user should not generate a congestion discard request unless a congestion accept
request was previously issued and a message signal unit has been delivered since the congestion
accept request was issued.

Response
The congestion discard request service primitive does not require receipt acknowledgement.

— Successful: When successful, this primitive does not require acknowledgement. The state
remains the same.

2014-10-25 89

Chapter 4: SLI Primitives

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using the LMI_ERROR_ACK primitive containing the error and reason. The state
remains the same.

Note that if the SLS provider is in the LMI_ENABLED state, but the link is not in the SL_STATE_IN_
SERVICE state, the primitive should be ignored and no non-fatal error generated.

Reason for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

90 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.3.4 SL_.CONGESTION_ACCEPT_REQ

Description

The congestion accept request service primitive is used by the SLS user to specify receive congestion
onset.

Format

The congestion accept request service primitive consists of one M_PCPROTO message block, structured
as follows:

typedef struct {
sl_long sl_primitive;
} sl_cong_accept_req_t;

Parameters
The congestion accept request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_CONGESTION_ACCEPT_REQ.

State

This primitive is valid only in LMI_ENABLED management state. It is valid in SL_STATE_IN_SERVICE
link state.

New State

The link and management state remains the same.

Response
The congestion accept request service primitive does not require receipt acknowledgement.

— Successful: When successful, this primitive does not require acknowledgement. The state
remains the same.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using the LMI_ERROR_ACK primitive containing the error and reason. The state
remains the same.

Note that if the SLS provider is in the LMI_ENABLED state, but the link is not in the SL_STATE_IN_
SERVICE state, the primitive should be ignored and no non-fatal error generated.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

2014-10-25 91

Chapter 4: SLI Primitives

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

92

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.3.5 SL_NO_CONGESTION_REQ

Description

The no congestion request service primitive is used by the SLS user to specify receive congestion
abatement.

Format

The no congestion request service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_no_cong_req_t;

Parameters

The no congestion request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_NO_CONGESTION_REQ.

State

This primitive is valid only in LMI_ENABLED management state. It is valid in SL_STATE_IN_SERVICE
link state.

New State

The link and management state remains the same.

Response
The no congestion request service primitive does not require receipt acknowledgement.

— Successful: When successful, this primitive does not require acknowledgement. The state
remains the same.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using the LMI_ERROR_ACK primitive containing the error and reason. The state
remains the same.

Note that if the SLS provider is in the LMI_ENABLED state, but the link is not in the SL_STATE_IN_
SERVICE state, the primitive should be ignored and no non-fatal error generated.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

2014-10-25 93

Chapter 4: SLI Primitives

[LMI_OUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

94

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4 Restoration Service Primitives

The restoration service primitives permit the SLS user to perform functions necessary for BSNT
retrieval to initiate or respond to sequenced changeover, buffer updating to respond to sequenced or
time-controlled changeover, and buffer clearing to respond to time-controlled changeover or processor
outage related failures.

These service primitives implement the restoration services (see Section 3.2.4 [Restoration Services],
page 24).

4.2.4.1 SL_RETRIEVE_BSNT_REQ

Description

The retrieve BSNT request service primitive allows the SLS user to request retrieval of the BSNT
(backward sequence number transmitted) which indicates the sequence number of the remove mes-
sage signal unit sent that was last acknowledged. This function is necessary to properly generate or
respond to a sequenced changeover procedure by the SLS user.

Format

The retrieve BSNT request service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_retrieve_bsnt_req_t;
Parameters

The retrieve BSNT request service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_RETRIEVE_BSNT_REQ.
State

This primitive is valid only in the LMI_ENABLED management state. The primitive is valid in the
SL_STATE_QUT_OF_SERVICE state.

New State

The new state is unchanged.

Rules

The SLS user should observe the following rules when issuing the retrieve BSNT request service

primitive:

— The SLS user should ensure that the link is in the SL_STATE_OUT_OF_SERVICE state before
issuing this primitive. One easy way to ensure that the link is in this state is to issue the stop
request SL_STOP_REQ.

Response

This service primitive requires the SLS provider to acknowledge success of failure of the retrieval
operation.

2014-10-25 95

Chapter 4: SLI Primitives

— Successful retrieval: When successful, the SLS provider indicate the retrieved BSNT value
using the SL_BSNT_IND primitive containing the BSNT value. The management and link states
remain the same.

— Unsuccessful retrieval: When unsuccessful, the SLS provider indicates that the BSNT value
cannot be retrieved using the SL_BSNT_NOT_RETRIEVABLE_IND. The management and link
states remain the same.

— Non-fatal errors: When a non-fatal error occurs, the SLS provider indicates the error using the
LMI_ERROR_ACK primitive containing the error and the reason.

When the management state is LMI_ENABLED and the link state is other than SL_STATE_OUT_OF_
SERVICE, the SLS provider should respond with SL_BSNT_NOT_RETRIEVABLE_IND instead of gener-
ating a non-fatal error.

Reason for Failure

Most SLS providers are always successful in retrieving the BSNT value. Applicable reasons for
failing to retrieve the BSNT value are as follows:

1. Hardware failure.
2. The signalling link is in the incorrect state (e.g. the in-service state).

Applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_QOUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

96 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.2 SL_BSNT_IND

Description

The BSNT indication service primitive is originated by the SLS provider to indicate the retrieved
BSNT value in response to a SL_RETRIEVE_BSNT_REQ primitive from the SLS user.

Format

The BSNT indication service primitive consists of one M_PROTO or M_PCPROTO message block, struc-
tured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_bsnt;

} sl_bsnt_ind_t;

Parameters
The BSNT indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_BSNT_IND.

sl_bsnt Indicates the value of the BSNT. The format of the BSNT value is provider-specific
but is typically a 7-bit or 12-bit sequence number.

State
This primitive is valid in management state LMI_ENABLED and link state SL_STATE_0OUT_OF _SERVICE.

New State

The new state remains unchanged.

Rules

The SLS provider observes the following rules when issuing a BSNT indication service primitive:

— The primitive is only issued from the LMI_ENABLED management state and the SL_STATE_QUT_
OF _SERVICE link state.

— The primitive is only issued in response to an outstanding SL_RETRIEVE_BSNT_REQ primitive
when it is possible for the SLS provider to retrieve the BSNT value.

Response

The primitive does not require a response from the SLS user.

2014-10-25 97

Chapter 4: SLI Primitives

4.2.4.3 SL_.BSNT_NOT_RETRIEVABLE_IND

Description

The BSNT not retrievable indication service primitive is originated by the SLS provider to indicate
that the BSNT value cannot be retrieved in response to a SL_RETRIEVE_BSNT_REQ primitive from
the SLS user.

Format

The BSNT not retrievable indication service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_bsnt;

} sl_bsnt_not_retr_ind_t;

Parameters
The BSNT not retrievable indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_BSNT_NOT_RETRIEVABLE_IND.

sl_bsnt Indicates the value of the BSNT. This value is the known value of the last acknowl-
edged message signal unit from the remote peer or minus one (-1UL) indicating that
a reasonable BSNT value is not known. The format of the BSNT is provider-specific,
but is typically a 7-bit or 12-bit sequence number.

State

This primitive is valid in management state LMI_ENABLED and is valid in any link state.

New State

The new state remains unchanged.

Rules

The SLS provider observes the following rules when issuing the BSNT not retrievable indication
service primitive:
— The primitive is only issued from the LMI_ENABLED management state, but may be issued from
any link state.

— The primitive is only issued in response to an outstanding SL_RETRIEVE_BSNT_REQ primitive
when it is not possible for the SLS provider to retrieve the BSNT value.

— When issued, a non-fatal error for the same request will not be issued.

Response

The primitive does not require a response from the SLS user.

98 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.4 SL_RETRIEVAL_REQUEST_AND_FSNC_REQ

Description

The retrieval request and FSNC request service primitive is originated by the SLS user when it wishes
to update the retransmission buffer with the last known acknowledged message (FSNC). The last
known acknowledged message is acquired by the SLS user with the sequence changeover procedure of
the message transfer part. The primitive requests that the SLS provider update the retransmission
buffer and then deliver the contents of the updated retransmission buffer and transmit buffers to
the SLS user.

Format
The retrieval request and FSNC request service primitive consists of one M_PROTO or M_PCPROTO
message block, structured as follows:
typedef struct {
sl_long sl_primitive;
sl_ulong sl_fsnc;
} sl_retrieval_req_and_fsnc_t;

Parameters

The retrieval request and FSNC request service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_RETRIEVAL_REQ_AND_FSNC_REQ.
sl_fsnc Specifies the value of the FSNC (forward sequence number confirmed). This is the last

known message to be acknowledge by the remote SLS provider. The format of the
FSNC is provider-specific, but is typically a 7-bit or 12-bit sequence number.

State

This primitive is only valid in management state LMI_ENABLED and is valid in link state SL_STATE_
OUT_OF_SERVICE.

New State

The new state remains unchanged.

Rules

Response
The retrieval request and FSNC request service primitive request the SLS provider to acknowledge
the result of the retrieval action as follows:

— Successful retrieval: When successful, the SLS provider indicates the updated contents of the
retransmission buffer and the contents of the transmission buffer using the SL_RETRIEVED_
MESSAGE_IND primitive followed by a SL_RETRIEVAL_COMPLETE_IND primitive. The state re-
mains unchanged.

— Unsuccessful retrieval: When unsuccessful, the SLS provider indicates failure to retrieve the
contents of the buffers with the SL_RETRIEVAL_NOT_POSSIBLE_IND primitive.

— Non-fatal errors: When a non-fatal error occurs, the SLS provider indicates the error using the
LMI_ERROR_ACK primitive containing the error and the reason. The state remains unchanged.

2014-10-25 99

Chapter 4: SLI Primitives

When the management stat is LMI_ENABLED and the link state is other than SL_STATE_QUT_OF_
SERVICE, the SLS provider should respond with SL_RETRIEVAL_NOT_POSSIBLE_IND instead of gen-
erating a non-fatal error.

Reason for Failure

Most SLS providers are always successful in retrieving the updated contents of the retransmission
buffer and transmission buffer. Applicable reasons for failing to retrieve the updated buffer contents
are as follows:

1. Hardware failure.
2. The signalling link is in the incorrect link state (e.g. the in-service state).

3. The specified value of FSNC does not match and is not adjacent to a message contained in the
retransmission buffer.

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

100 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.5 SL_RETRIEVED_MESSAGE_IND

Description

The retrieved message indication service primitive is originated by the SLS provider to transfer the
contents of the updated retransmission buffer and transmission buffer to the SLS user. One primitive
is used for each message retrieved. The oldest message in the buffers is indicated first.

Format

The retrieved message indication service primitive consists of one M_PROTO message block followed
by one or more M_DATA message blocks containing the retrieved message signal unit in the same
format as it was presented to the SLS provider for transmission. The M_PROTO message block is
structured as follows:
typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;
} sl_retrieved_msg_ind_t;

Parameters
The retrieve message indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_RETRIEVED_MESSAGE_IND.

sl_mp Indicates the message priority for the message that was specified in the SL_PDU_REQ
primitive from the SLS user when the message was submitted for transmission. Message
priorities are provider-specific, but are typically between 0 and 3. This message priority
field is only applicable to SS7 protocol variants that place message priority bits in a
field of the Level 2 header, such as TTC.

State

This primitive is only issued in management state LMI_ENABLED and link state SL_STATE_OUT_OF_
SERVICE.

New State

The new state remains unchanged.

Rules
The SLS provider observes the following rules when issuing a retrieved message indication service
primitive:
— The primitive is only issued from the LMI_ENABLED management state and the SL_STATE_QUT_
OF _SERVICE link state.

— The primitive is only issued in response to an outstanding SL_RETRIEVAL_REQUEST_AND_FSNC_
REQ primitive when it is possible for the SLS provider to update and retrieve message signal
units from the retransmission and transmission buffers.

— The primitive is not issued when the updated retransmission buffer and transmission buffer are
empty.

2014-10-25 101

Chapter 4: SLI Primitives

Response

This primitive does not require response from the SLS user.

102 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.6 SL_RETRIEVAL_COMPLETE_IND

Description

The retrieval complete indication service primitive is originated by the SLS provider to indicate the
completion of transfer of the contents of the updated retransmission buffer and transmission buffer
to the SLS user. The primitive is issued in response to a SL_RETRIEVAL_REQUEST_AND_FSNC_REQ
primitive issued by the SLS user.

Format

The retrieval complete indication service primitive consists of one M_PROTO message block and zero
or more M_DATA message blocks containing the last retrieved message signal unit in the same format
as it was presented to the SLS provider for transmission. The M_PROTO message block is structured
as follows:
typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;
} sl_retrieval_comp_ind_t;

Parameters
The retrieval complete indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_RETRIEVAL_COMPLETE_IND.

sl_mp When accompanied by M_DATA message blocks containing the last retrieved message
signal unit, the sI_mp field indicates the message priority for that message that was
specified in the SL_PDU_REQ primitive from the SLSL user when the message was sub-
mitted for transmission. Message priorities are provider-specific, but are typically
between 0 and 3. This message priority field is only applicable to SS7 protocol variants
that place message priority bits in a field of the Level 2 header, such as TTC.

State

This primitive is only issued in management state LMI_ENABLED and link state SL_STATE_OUT_OF_
SERVICE.

New State

The new state remains unchanged.

Rules
The SLS provider observes the following rules when issuing a retrieval complete indication service
primitive:
— The primitive is only issued from the LMI_ENABLED management state and the SL_STATE_OUT_
OF _SERVICE link state.

— The primitive is only issued in response to an outstanding SL_RETRIEVAL_REQUEST_AND_FSNC_
REQ primitive when transfer of the updated retransmission buffer and transmission buffer is
complete.

— A message signal unit is not attached to the primitive in M_DATA message blocks when the
updated retransmission and transmission buffers were empty.

2014-10-25 103

Chapter 4: SLI Primitives

— Attaching the last retrieved message to the primitive in M_DATA message blocks is optional and
not recommended: the SL_RETRIEVED_MESSAGE_IND primitive should be used to transfer all
retrieved message signal units first.

— Upon receipt of the retrieval complete indication service primitive, the SLS user will consider
the retrieval operation complete.

Response

This primitive does not require a response from the SLS user.

Reason for Failure

104 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.7 SL_RETRIEVAL_NOT_POSSIBLE_IND

Description

The retrieval not possible indication service primitive is originated by the SLS provider to indicate
that the updated contents of the retransmission and transmission buffers is not possible. The
primitive is issued in response to a SL_RETREIVAL_REQUEST_AND_FSNC_REQ primitive received from
the SLS user.

Format

The retrieval not possible indication service primitive consists of one M_PROTO message block, struc-
tured as follows:

typedef struct {
sl_long sl_primitive;
} sl_retrieval_not_poss_ind_t;

Parameters
The retrieval not possible indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_RETRIEVAL_NOT_POSSIBLE_IND.
State

This primitive is only issued from the LMI_ENABLED management state, but may be issued from any
link state.

New State

The new state remains unchanged.

Rules

The SLS provider observes the following rules when issuing the retrieval not possible indication
service primitive:
— The primitive is only issued from the LMI_ENABLED management state, but may be issued from
any link state.

— The primitive is only issued in response to an outstanding SL_RETRIEVAL_REQUEST_AND_FSNC_
REQ primitive when it is not possible to update and retrieve the updated contents of the re-
transmission and transmission buffers.

— When issued, a non-fatal error will not be issued for the same request.

— Upon receipt of the primitive, the SLS user shall consider the retrieval operation complete.

Response

The primitive does not require a response from the SLS user.

2014-10-25 105

Chapter 4: SLI Primitives

4.2.4.8 SL_.CLEAR_BUFFERS_REQ

Description

The clear buffers request service primitive is originated by the SLS user to request that all message
buffers be cleared by the SLS provider. This includes receive buffer, retransmission buffer and
transmission buffers.

Format

The clear buffers request service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_clear_buffers_req_t;

Parameters
The clear buffers request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_CLEAR_BUFFERS_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and the SL_STATE_OUT_OF_
SERVICE link state.

New State

The new state remains unchanged.

Response
The clear buffers request service primitive requires the SLS provider to indicate when the receive
buffer and retransmission buffers are cleared, as follows:

— Successful: When successful, the SLS provider clears the receive buffer, retransmission buffer
and transmission buffer. When the receive buffer is cleared, the SLS provider indicates the
clearing with the SL_RB_CLEARED_IND primitive. When the retransmission buffer is cleared,
the SLS provider indicates the clearing with the SL_RTB_CLEARED_IND primitive. The state
remains unchanged.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using the LMI_ERROR_ACK primitive containing the error and reason for failure.
The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

106 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 107

Chapter 4: SLI Primitives

4.2.4.9 SL_.CLEAR_RTB_REQ

Description

The clear RTB request service primitive is originated by the SLS user to request that only the
retransmission buffer be cleared by the SLS provider. This primitive is used in conjunction with the
time-controlled changeover procedure of the message transfer part.

Format

The clear RTB request service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_clear_rtb_req_t;

Parameters

The clear RTB request service primitive contains the following parameters:
sl_primitive
Specifies the service primitive type. Always SL_CLEAR_RTB_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and the SL_STATE_OUT_OF_
SERVICE link state.

New State

The new state remains unchanged.

Response

The clear RTB request service primitive requires the SLS provider to indicate when the retransmis-
sion buffer has been cleared, as follows:

— Successful: When successful, the SLS provider clears the retransmission buffer. When the
retransmission buffer is cleared, the SLS provider indicates the clearing with the SL_RTB_
CLEARED_IND primitive. The state remains unchanged.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using the LMI_ERROR_ACK primitive containing the error and reason for failure.
The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

108 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_FATALERR]
Device has become unusable.

[LMI_QUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 109

Chapter 4: SLI Primitives

4.2.4.10 SL_LRB_CLEARED_IND

Description

The RB cleared indication service primitive is originated by the SLS provider whenever the receive
buffer has been cleared; either in response to a SL_CLEAR_BUFFERS_REQ primitive from the SLS user,
or due to internal state machine operations.

Format

The RB cleared indication service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;

} sl_rb_cleared_ind_t;
Parameters
The RB cleared indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_RB_CLEARED_IND.

State

This primitive is only issued by the SLS provider in the LMI_ENABLED management state and the
SL_STATE_QUT_OF_SERVICE link state.

New State

The new state remains unchanged.

Rules

The SLS provider observes the following rules when issuing the RB cleared indication service prim-
itive:
— The primitive is only issued from the LMI_ENABLED management state and the SL_STATE_QUT_
OF_SERVICE link state.
— The primitive is issued in response to a SL_CLEAR_BUFFERS_REQ primitive from the SLS user.

— The primitive is also issued in response to internal state machine transitions.

Response

This primitive does not require a response from the SLS user.

110 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.4.11 SL_RTB_CLEARED_IND

Description

The RTB cleared indication service primitive is originated by the SLS provider whenever the re-
transmission buffer has been cleared; either in response to a SL_CLEAR_BUFFERS_REQ or SL_CLEAR_
RTB_REQ primitive, or due to internal state machine operations.

Format

The RTB cleared indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
sl_long sl_primitive;
} sl_rtb_cleared_ind_t;

Parameters
The RTB cleared indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_RTB_CLEARED_IND.

State

The primitive is only issued by the SLS provider from the LMI_ENABLED management state and the
SL_STATE_QUT_OF_SERVICE link state.

New State

The new state remains unchanged.

Rules

The SLS provider observes the following rules when issuing the RTB cleared indication service
primitive:
— The primitive is only issued from the LMI_ENABLED management state and the SL_STATE_QUT_
OF_SERVICE link state.

— The primitive is issued in response to a SL_CLEAR_BUFFERS_REQ or SL_CLEAR_RTB_REQ primitive
from the SLS user.

— The primitive is also issued in response to internal state machine transitions.

Response

This primitive does not require a response from the SLS user.

2014-10-25 111

Chapter 4: SLI Primitives

4.2.5 Processor Outage Service Primitives

The processor outage service primitive permit the SLS user the ability to assert and resume from
a local processor outage condition as well as being informed by the SLS provider when a local or
remote processor outage condition is in effect or has cleared. The SLS user is also able, using these
and other primitives, to recover from a local or remote processor outage condition.

These service primitives implement the processor outage services (see Section 3.2.5 [Processor Outage
Services], page 28).

4.2.5.1 SL_LOCAL_PROCESSOR_OUTAGE_REQ

Description

The local processor outage request service primitive allows the SLS user to specify that a local
processor outage condition exists.

Format

The local processor outage request service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:

typedef struct {
sl_long sl_primitive;
} sl_local_proc_outage_req_t;

Parameters
The local processor outage request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_LOCAL_PROCESSOR_OUTAGE_REQ.

State
This primitive is only valid in the LMI_ENABLED management state but is valid from any link state.

New State
The new state is SL_STATE_PROCESSOR_QOUTAGE.

Response

This primitive does not request a response from the SLS provider.

— Successful: When successful, the link moves to the SL_STATE_PROCESSOR_OUTAGE state and a
local processor outage condition is asserted.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider will negatively acknowl-
edge the primitive using the LMI_ERROR_ACK primitive containing the error and reason for
failure. The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

112 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 113

Chapter 4: SLI Primitives

4.2.5.2 SL_.LOCAL_PROCESSOR_OUTAGE_IND

Description

The local processor outage indication service primitive is originated by the SLS provider when it
detects a local processor outage condition internal to the SLS provider.

Format

The local processor outage indication service primitive consists of on M_PROTO message block, struc-
tured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
} sl_loc_proc_out_ind_t;

Parameters
The local processor outage indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_LOCAL_PROCESSOR_OUTAGE_IND.

sl_timestamp
Indicates the time at which the detection of local processor outage occurred. This is
UNIX time from epoch timestamp in milliseconds.

State

This primitive is only issued by the SLS provider in the LMI_ENABLED management state and active
or blocked link state.

New State
The new state is SL_STATE_PROCESSOR_QOUTAGE.

Rules

The SLS provider observes the following rules when issuing the local processor outage indication
service primitive:
— The primitive is only issued in the LMI_ENABLED management state.

— SLS provider detection of local processor outage and SLS user detection of local processor
outage are independent conditions.

— The SLS provider will issue a SL_LOCAL_PROCESSOR_RECOVERED_IND primitive when the local
processor outage condition is no longer in effect.

Response

This primitive does not require a response from the SLS user.

114 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.5.3 SL_RESUME_REQ

Description

The resume request service primitive allows the SLS user to specify that a local processor outage
condition is no longer in effect. That is, that the local processor has recovered.

Format

The resume request service primitive consists of one M_PROT0 or M_PCPROTO message block, structured
as follows:

typedef struct {
sl_long sl_primitive;
} sl_resume_req_t;

Parameters
The resume request service primitive contains the following parameters:

sl_primitive
Specifies the service primitive type. Always SL_RESUME_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and when the link is in the SL_
STATE_PROCESSOR_OUTAGE state with a local processor outage condition asserted by the SLS user
with a previous SL_LOCAL_PROCESSOR_OUTAGE_REQ primitive.

New State

The new state is SL_STATE_IN_SERVICE provided that no other processor outage condition is cur-
rently asserted.

Response
This primitive does not request a response from the SLS provider.

— Successful: When successful, the link moves to the SL_STATE_IN_SERVICE state and the local
processor outage condition is removed.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider will negatively acknowl-
edge the primitive using the LMI_ERROR_ACK primitive containing the error and reason for
failure. The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

2014-10-25 115

Chapter 4: SLI Primitives

[LMI_FATALERR]
Device has become unusable.

[LMI_QUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

116 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.5.4 SL_.LOCAL_PROCESSOR_RECOVERED_IND

Description

The local processor recovered indication service primitive is originated by the SLS provider when it
detects a remote processor recovery condition.

Format

The local processor recovered indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;

T sl_loc_proc_recovered_ind_t;

Parameters
The local processor recovered indication service primitive contains the following parameters:

sl_primitive
Indicates the service primitive type. Always SL_LOCAL_PROCESSOR_RECOVERED_IND.

sl_timestamp
Indicates the time at which the detection of local processor recovery occurred. This is
UNIX time from epoch timestamp in milliseconds.

State

This primitive is only issued by the SLS provider in the LMI_ENABLED management state and the
link state of SL_STATE_PROCESSOR_OUTAGE with local outage asserted by the SLS provider.

New State

The new state is SL_STATE_IN_SERVICE provided that no other processor outage condition (SLS
user local, or remote) exists.

Rules

The SLS provider observes the following rules when issuing a local processor recovered indication
service primitive:
— The primitive is only issued in the LMI_ENABLED management state.

— The SLS provider will only issue this primitive after it has issued a SL_LOCAL_PROCESSOR_
OUTAGE_IND primitive and when the local processor outage condition is no longer in effect.

Response

This primitive does not require a respnose from the SLS user, nevertheless, the SLS user will typically
attempt to continue on the link or restore it using restoration service primitives.

2014-10-25 117

Chapter 4: SLI Primitives

4.2.5.5 SL_LREMOTE_PROCESSOR_OUTAGE_IND

Description

The remote processour outage indication service primitive is originated by the SLS provider when
it detects a remote processor outage condition.

Format

The remove processor outage indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
} sl_rem_proc_out_ind_t;

Parameters
The remove processor outage indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_REMOTE_PROCESSOR_OUTAGE_IND.

sl_timestamp
Indicates the time at which the detection of remote processor outage occurred. This is
UNIX time from epoch timestamp in milliseconds.

State

This primitive is only issued by the SLS provider in the LMI_ENABLED management state and active
or blocked link state.

New State
The new state is SL_STATE_PROCESSOR_QOUTAGE.

Rules

The SLS provider observes the following rules when issuing the remote processor outage indication
service primitive:

— The primitive is only issued in the LMI_ENABLED management state.

— The SLS provider will issue a SL_REMOTE_PROCESSOR_RECOVERED_IND primitive when the re-
mote processor outage condition is no longer in effect.

Response

This primitive does not require a response from the SLS user.

118 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

4.2.5.6 SL_LREMOTE_PROCESSOR_RECOVERED_IND

Description

The remote processor recovered indication service primitive is originated by the SLS provider when
it detects a remote processor recovery condition.

Format

The remote processor recovered indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;

T sl_rem_proc_recovered_ind_t;

Parameters
The remote processor recovered indication service primitive contains the following parameters:
sl_primitive

Indicates the service primitive type. Always SL_REMOTE_PROCESSOR_RECOVERED_IND.

sl_timestamp
Indicates the time at which the detection of remote processor recovery occurred. This
is UNIX time from epoch timestamp in milliseconds.

State

This primitive is only issued by the SLS provider in the LMI_ENABLED management state and the
link state of SL_STATE_PROCESSOR_OUTAGE with remote process outage asserted.

New State

The new state is unchanged.

Rules

The SLS provider observes the following rules when issuing a remote processor recovered indication
service primitive:

— The primitive is only issued in the LMI_ENABLED management state.

— The SLS provider will only issue this primitive after it was issued a SL_REMOTE_PROCESSOR_
OUTAGE_IND primitive when the remote processor outage condition is no longer in effect.

Response

This primitive does not require a response from the SLS user, nevertheless, the SLS user will typically
attempt to continue on the link or restore it using restoration service primitives.

2014-10-25 119

Chapter 4: SLI Primitives

4.2.5.7 SL_.CONTINUE_REQ

Description

The continue request service primitive is originated by the SLS user to request that a link previously
in a remote processor outage condition, or a SLS provider detected local process outage condition,
be continued. This action is normally performed where processor outage has not been of a long
duration and it is not necessary to fail or otherwise restore the signalling link.

Format

The continue request service primitive consists of one M_PROTO or M_PCPROTO message block, format-
ted as follows:

typedef struct {
sl_long sl_primitive;
} sl_continue_req_t;

Parameters
The continue request service primitive contains the following parameters:
sl_primitive

Specifies the service primitive type. Always SL_CONTINUE_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and valid in the SL_STATE_
PROCESSOR_OUTAGE state where local (SLS provider detected) or remote processor recovery has been
indicated.

New State

The new state is SL_STATE_IN_SERVICE, provided that there is no other processor outage condition
in effect.

Response

This primitive does not require receipt acknowledgement by the SLS provider.

— Successful: When successful, the primtiive does not require acknowledgement and the link
moves to the SL_STATE_IN_SERVICE state.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider negatively acknowledges
the primitive using an LMI_ERROR_ACK primitive containing the error and reason for failure.
The state reamins unchanged.

Reason for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

120 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_FATALERR]
Device has become unusable.

[LMI_QUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 121

Chapter 4: SLI Primitives

4.2.6 Link Option Management Service Primitives

The link option management service primitives provide another mechanism for options management
separate from the local management interface (i.e. the LMI_OPTMGMT_REQ and LMI_OPTMGMT_ACK
primitives). These service primitives are not currently supported by any SLS provider and their use
is deprecated.

These service primitives implement the link option management service (see Section 3.2.6 [Link
Option Management Service], page 30).

4.2.6.1 SL_OPTMGMT_REQ

Description

This SLS user originated primitive requests that the SLS provider options be managed.

Format

The link option management request service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:
typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1lmi_opt_length;
Imi_ulong 1lmi_opt_offset;
Imi_ulong 1mi_mgmt_flags;
} 1mi_optmgmt_req_t;

Parameters
The link option management request service primitive contains the following parameters:

Imi_primitive
Specifies the service primitive type. Always SL_OPTMGMT_REQ.

Imi_opt_length
Specifies the length of the options.

Imi_opt_offset
Specifies the offset, from the beginning of the M_PROTO message block, of the start of
the options.

Imi_mgmt_flags
Specifies the management flags which determine what operation the LMS provider is
expected to perform on the specified options. This field can assume one of the following
values:

LMI_NEGOTIATE
Negotiate the specified value of each specified option and return the ne-
gotiated value.

LMI_CHECK Check the validity of the specified value of each specified option and return
the result. Do not alter the current value assumed by the LMS provider.

LMI_DEFAULT
Return the default value for the specified options (or all options). Do not
alter the current value assumed by the LMS provider.

122 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

LMI_CURRENT
Return the current value for the specified options (or all options). Do not
alter the current value assumed by the LMS provider.

State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Rules

Response

The link option management request service primitive requires the LMS provider to acknowledge
receipt of the primitive as follows:

— Successful: Upon success, the LMS provider acknowledges receipt of the service primitive and
successful completion of the link options management service with an SL_OPTMGMT_ACK primitive
containing the link options management result. The state remains unchanged.

— Unsuccessful (non-fatal errors): Upon failure, the LMS provider acknowledges receipt of the
service primitive and failure to complete the link options management service with an LMI_
ERROR_ACK primitive containing the error. The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_BADADDRESS]
Address was invalid.

[LMI_BADADDRTYPE]
Invalid address type.

[LMI_BADDIAL]
(Not used.)

[LMI_BADDIALTYPE]
(Not used.)

[LMI_BADDISPOSAL]
Invalid disposal parameter.

[LMI_BADFRAME]
Defective SDU received.

[LMI_BADPPA]
Invalid PPA identifier.

[LMI_BADPRIM]
Unrecognized primitive.

2014-10-25 123

Chapter 4: SLI Primitives

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

[LMI_INITFAILED]
Link initialization failed.

[LMI_NOTSUPP]

Primitive not supported by this device.

[LMI_QUTSTATE]

Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_WRITEFAIL]
Unitdata request failed.

[LMI_CRCERR]
CRC or FCS error.

[LMI_DLE_EQT]
DLE EOT detected.

[LMI_FORMAT]
Format error detected.

[LMI_HDLC_ABORT]
Aborted frame detected.

[LMI_OVERRUN]
Input overrun.

[LMI_TOOSHORT]
Frame too short.

[LMI_INCOMPLETE]
Partial frame received.

[LMI_BUSY]
Telephone was busy.

[LMI_NOANSWER]
Connection went unanswered.

[LMI_CALLREJECT]
Connection rejected.

[LMI_HDLC_IDLE]
HDLC line went idle.

124

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_HDLC_NOTIDLE]
HDLC link no longer idle.

(LMI_QUIESCENT]
Line being reassigned.

[LMI_RESUMED]
Line has been reassigned.

[LMI_DSRTIMEOUT]
Did not see DSR in time.

[LMI_LAN_COLLISIONS]
LAN excessive collisions.

[LMI_LAN_REFUSED]
LAN message refused.

[LMI_LAN_NOSTATION]
LAN no such station.

(LMI_LOSTCTS]
Lost Clear to Send signal.

[LMI_DEVERR]
Start of device-specific error codes.

2014-10-25 125

Chapter 4: SLI Primitives

4.2.6.2 SL_OPTMGMT_ACK

Description

This LMS provider originated primitive is issued by the LMS provider upon successful completion
of the link options management service. It indicates the outcome of the link options management
operation requested by the LMS user in a SL_OPTMGMT_REQ primitive.

Format

The link option management acknowledgement service primitive consists of one M_PCPROTO message
block, structured as follows:
typedef struct {
Imi_long lmi_primitive;
Imi_ulong 1mi_opt_length;
Imi_ulong 1lmi_opt_offset;
Imi_ulong 1mi_mgmt_flags;
} 1mi_optmgmt_ack_t;

Parameters

The link option management acknowledgement service primitive contains the following parameters:

Imi_primitive

Indicates the service primitive type. Always SL_OPTMGMT_ACK.

Imi_opt_length

Indicates the length of the returned options.

Imi_opt_offset

Indicates the offset of the returned options from the start of the M_PCPROTO message
block.

Imi_mgmt_flags

126

Indicates the returned management flags. These flags indicate the overall success of
the link options management service. This field can assume one of the following values:
LMI_SUCCESS
The LMS provider succeeded in negotiating or returning all of the options
specified by the LMS user in the LMI_OPTMGMT_REQ primitive.
LMI_FAILURE
The LMS provider failed to negotiate one or more of the options specified
by the LMS user.

LMI_PARTSUCCESS
The LMS provider negotiated a value of lower quality for one or more of
the options specified by the LMS user.

LMI_READONLY
The LMS provider failed to negotiate one ore more of the options specified
by the LMS user because the option is treated as read-only by the LMS
provider.

LMI_NOTSUPPORT
The LMS provider failed to recognize one or more of the options specified
by the LMS user.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

State
This primitive is issued by the LMS provider in direct response to an SL_OPTMGMT_REQ primitive.

New State

The new state remains unchanged.

Rules

The LMS provider follows the following rules when processing link option management service
requests:
— When the Imi_mgmt_flags field in the SL_OPTMGMT_REQ primitive is set to LMI_NEGOTIATE, the
LMS provider will attempt to negotiate a value for each of the options specified in the request.
— When the flags are LMI_DEFAULT, the LMS provider will return the default values of the specified
options, or the default values of all options known to the LMS provider if no options were
specified.
— When the flags are LMI_CURRENT, the LMS provider will return the current values of the specified
options, or all options.
— When the flags are LMI_CHECK, the LMS provider will attempt to negotiate a value for each of
the options specified in the request and return the resulg of the negotiation, but will not affect
the current value of the option.

2014-10-25 127

Chapter 4: SLI Primitives

4.2.7 Event Notification Service Primitives

The event notification service primitives provide another mechanism for event notification separate
from the local management interface (i.e. the LMI_EVENT_IND primitive). These service primitives
are not currently supported by any SLS provider and their use is deprecated.

These service primitives implement the event notification service (see Section 3.2.7 [Event Notifica-
tion Service], page 30).

4.2.7.1 SL_NOTIFY_REQ

Description

This SLS user originated primitives requests that the SLS provider register the SLS user for various
events.

Format

Not documented.

Parameters
sl_primitive
Specifies the service primitive type. Always SL_NOTIFY_REQ.
State
Any state.

New State
Unchanged.

Response

This primitive does not require receipt acknolwedgement from the SLS provider.

— Successful: When successful, the events are registered and no acknowledgement is required.
The state remains unchanged.

— Unsuccessful (non-fatal errors): When unsuccessful, the SLS provider generates a negative
acknowledgement using a LMI_ERROR_ACK primitive containing the error and reason for failure.
The state remains unchanged.

Reason for Failure
Non-Fatal Errors: applicable non-fatal errors are as follows:

[LMI_UNSPEC]
Unknown or unspecified.

[LMI_DISC]
Disconnected.

[LMI_EVENT]
Protocol-specific event occurred.

[LMI_FATALERR]
Device has become unusable.

128 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Primitives

[LMI_OUTSTATE]
Primitive was issued from invalid state.

[LMI_PROTOSHORT]
M_PROTO block too short.

[LMI_SYSERR]
UNIX system error.

[LMI_DEVERR]

Start of device-specific error codes.

Notes

This primitive is deprecated and has been replaced by the local management inteface event reporting
service discussed in Section 3.1.8 [Event Reporting Service], page 19.

2014-10-25 129

Chapter 4: SLI Primitives

4.2.7.2 SL_NOTIFY_IND

Description

This SLS provider originated primitive indicates that an event for which the SLS provider has
registered has occurred.

Format

Not documented.

Parameters
sl_primitive
Specifies the service primitive type. Always SL_NOTIFY_IND.

State
Any state.

New State
Unchanged.

Rules

The SLS provider observes the following rules when issuing the event notification indication service
primtiive:
— This primitive is only issued by the SLS provider for event for which the SLS user has explicitly
registered with the SL_NOTIFY_REQ primitive.

— Specific events are provider-specific.

Notes

This primitive is deprecated and has been replaced by the local management inteface event reporting
service discussed in Section 3.1.8 [Event Reporting Service], page 19.

130 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Diagnostics Requirements

5 Diagnostics Requirements

Two error handling facilities should be provided to the SLS user: one to handle non-fatal errors,
and the other to handle fatal errors.

5.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the SLS interface as seen by the SLS user and provide
the user with the option of reissuing the SL primitive with the corrected options specification. The
non-fatal error handling is provided only to those primitives that require acknowledgements, and
uses the LMI_ERROR_ACK to report these errors. These errors retain the state of the SLS interface
the same as it was before the SL provider received the primitive that was in error. Syntax errors
and rule violations are reported via the non-fatal error handling facility.

5.2 Fatal Error Handling Facility

These errors are issued by the SL provider when it detects errors that are not correctable by the SL
user, or if it is unable to report a correctible error to the SLS user. Fatal errors are indicated via the
STREAMS message type M_ERROR with the UNIX system error EPROT0. The M_ERROR STREAMS
message type will result in the failure of all the UNIX system calls on the stream. The SLS user can
recover from a fatal error by having all the processes close the files associated with the stream, and
then reopening them for processing.

2014-10-25 131

Signalling Link Interface (SLI)

LMI Header File Listing

Appendix A LMI Header File Listing

#ifndef __LMI_H__
#define __LMI_H__
#define LMI_PROTO_BASE 16L
#tdefine LMI_DSTR_FIRST (1L + LMI_PROTO_BASE)
#define LMI_INFO_REQ (1L + LMI_PROTO_BASE)
#define LMI_ATTACH_REQ (2L + LMI_PROTO_BASE)
#define LMI_DETACH_REQ (3L + LMI_PROTO_BASE)
#define LMI_ENABLE_REQ (4L + LMI_PROTO_BASE)
#define LMI_DISABLE_REQ (5L + LMI_PROTO_BASE)
#define LMI_OPTMGMT_REQ (6L + LMI_PROTO_BASE)
#tdefine LMI_DSTR_LAST (6L + LMI_PROTO_BASE)
#define LMI_USTR_LAST (-1L - LMI_PROTO_BASE)
#define LMI_INFO_ACK (-1L - LMI_PROTO_BASE)
#define LMI_OK_ACK (-2L - LMI_PROTO_BASE)
#define LMI_ERROR_ACK (-3L - LMI_PROTO_BASE)
#define LMI_ENABLE_CON (-4L - LMI_PROTO_BASE)
#define LMI_DISABLE_CON (-5L - LMI_PROTO_BASE)
#define LMI_OPTMGMT_ACK (-6L - LMI_PROTO_BASE)
#define LMI_ERROR_IND (-7L - LMI_PROTO_BASE)
#tdefine LMI_STATS_IND (-8L - LMI_PROTO_BASE)
#define LMI_EVENT_IND (-9L - LMI_PROTO_BASE)
#define LMI_USTR_FIRST (-9L - LMI_PROTO_BASE)
#define LMI_UNATTACHED 1L /* No PPA attached, awating LMI_ATTACH_REQ */
#define LMI_ATTACH_PENDING 2L /* Waiting for attach */
#define LMI_UNUSABLE 3L /* Device cannot be used, STREAM in hung state */
#tdefine LMI_DISABLED 4L /* PPA attached, awaiting LMI_ENABLE_REQ */
#define LMI_ENABLE_PENDING 5L /* Waiting to send LMI_ENABLE_CON */
#define LMI_ENABLED 6L /* Ready for use, awaiting primtiive exchange */
#define LMI_DISABLE_PENDING 7L /* Waiting to send LMI_DISABLE_CON */
#define LMI_DETACH_PENDING 8L /* Waiting for detach */
/*
* LMI_ERROR_ACK and LMI_ERROR_IND reason codes
*/
#define LMI_UNSPEC 0x00000000 /* Unknown or unspecified */
#define LMI_BADADDRESS 0x00010000 /* Address was invalid */
#define LMI_BADADDRTYPE 0x00020000 /* Invalid address type */
#tdefine LMI_BADDIAL 0x00030000 /* (not used) */
#define LMI_BADDIALTYPE 0x00040000 /* (not used) */
#define LMI_BADDISPOSAL 0x00050000 /* Invalid disposal parameter */
#define LMI_BADFRAME 0x00060000 /* Defective SDU received */
#define LMI_BADPPA 0x00070000 /* Invalid PPA identifier */
#define LMI_BADPRIM 0x00080000 /* Unregognized primitive */
#define LMI_DISC 0x00090000 /* Disconnected */
#define LMI_EVENT 0x000a0000 /% Protocol-specific event ocurred */
#define LMI_FATALERR 0x000b0000 /* Device has become unusable */
#define LMI_INITFAILED 0x000c0000 /* Link initialization failed */
#define LMI_NOTSUPP 0x000d40000 /* Primitive not supported by this device */
#define LMI_QUTSTATE 0x000e0000 /* Primitive was issued from invalid state */

2014-10-25 133

Appendix A: LMI Header File Listing

#define LMI_PROTOSHORT 0x000£0000 /* M_PROTO block too short */
#define LMI_SYSERR 0x00100000 /* UNIX system error */

#define LMI_WRITEFAIL 0x00110000 /* Unitdata request failed */
#define LMI_CRCERR 0x00120000 /* CRC or FCS error */

#define LMI_DLE_EOT 0x00130000 /* DLE EOT detected */

#define LMI_FORMAT 0x00140000 /* Format error detected */
#define LMI_HDLC_ABORT 0x00150000 /* Aborted frame detected */
#define LMI_OVERRUN 0x00160000 /* Input overrun */

#define LMI_TOOSHORT 0x00170000 /* Frame too short */

#define LMI_INCOMPLETE 0x00180000 /* Partial frame received */
#define LMI_BUSY 0x00190000 /* Telephone was busy */
#define LMI_NOANSWER 0x00120000 /* Connection went unanswered */
#define LMI_CALLREJECT 0x001b0000 /* Connection rejected */
#define LMI_HDLC_IDLE 0x001c0000 /* HDLC line went idle */
#define LMI_HDLC_NOTIDLE 0x001d0000 /* HDLC link no longer idle */
#define LMI_QUIESCENT 0x001e0000 /* Line being reassigned */
#define LMI_RESUMED 0x001£0000 /* Line has been reassigned */
#define LMI_DSRTIMEOUT 0x00200000 /* Did not see DSR in time */
#define LMI_LAN_COLLISIONS 0x00210000 /* LAN excessive collisions */
#define LMI_LAN_REFUSED 0x00220000 /* LAN message refused */
#define LMI_LAN_NOSTATION 0x00230000 /* LAN no such station */
#define LMI_LOSTCTS 0x00240000 /* Lost Clear to Send signal */
#define LMI_DEVERR 0x00250000 /* Start of device-specific error codes */

typedef signed int 1lmi_long;
typedef unsigned int 1lmi_ulong;
typedef unsigned short 1lmi_ushort;
typedef unsigned char 1lmi_uchar;

/*
* LOCAL MANAGEMENT PRIMITIVES
*/

/*
LMI_INFO_REQR, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long 1lmi_primitive; /* LMI_INFO_REQ */
} Imi_info_req_t;

/*
LMI_INFO_ACK, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long Imi_primitive; /* LMI_INFO_ACK */
Imi_ulong lmi_version;
Imi_ulong 1lmi_state;
Imi_ulong 1lmi_max_sdu;
Imi_ulong 1lmi_min_sdu;
Imi_ulong 1lmi_header_len;
Imi_ulong lmi_ppa_style;
Imi_ulong 1lmi_ppa_length;
Imi_ulong lmi_ppa_offset;

1mi_ulong lmi_prov_flags; /* provider specific flags */

134

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) LMI Header File Listing

Imi_ulong 1lmi_prov_state; /* provider specific state */
1mi_uchar lmi_ppa_addr[0];
} Imi_info_ack_t;

#define LMI_VERSION_1 1
#define LMI_VERSION_2 2
#define LMI_CURRENT_VERSION LMI_VERSION_2

/*

* LMI provider style.

*

* The LMI provider style which determines whether a provider requires an
* LMI_ATTACH_REQ to inform the provider which PPA user messages should be
* sent/received on.

*/
#define LMI_STYLE1 0x00 /* PPA is implicitly bound by open(2) */
#define LMI_STYLE2 0x01 /* PPA must be explicitly bound via STD_ATTACH_REQ */
/*

LMI_ATTACH_REQ, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long 1lmi_primitive; /* LMI_ATTACH_REQ */
Imi_ulong 1lmi_ppa_length;
Imi_ulong lmi_ppa_offset;
1mi_uchar 1mi_ppal0];
} lmi_attach_req_t;

/*
LMI_DETACH_REQ, M_PROTO or M_PCPROTO
*/

typedef struct {
1mi_long lmi_primitive; /* LMI_DETACH_REQ */
} 1mi_detach_req_t;

/*
LMI_ENABLE_REQ, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long lmi_primitive; /* LMI_ENABLE_REQ */
Imi_ulong 1lmi_rem_length;
Imi_ulong lmi_rem_offset;
1mi_uchar 1lmi_rem[0];
} 1mi_enable_req_t;

/*
LMI_DISABLE_REQ, M_PROTO or M_PCPROTO
*/

typedef struct {

Imi_long 1lmi_primitive; /* LMI_DISABLE_REQ */
} 1mi_disable_req_t;

2014-10-25

135

Appendix A: LMI Header File Listing

/*
LMI_OK_ACK, M_PROTO or M_PCPROTO
*/

typedef struct {
1mi_long lmi_primitive; /* LMI_OK_ACK */
Imi_long lmi_correct_primitive;
Imi_ulong 1lmi_state;

} 1mi_ok_ack_t;

/*
LMI_ERROR_ACK, M_CTL
*/

typedef struct {
Imi_long lmi_primitive; /* LMI_ERROR_ACK */
Imi_ulong lmi_errno;
Imi_ulong 1lmi_reason;
Imi_long lmi_error_primitive;
Imi_ulong 1lmi_state;
} 1mi_error_ack_t;

/*
LMI_ENABLE_CON, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long lmi_primitive; /* LMI_ENABLE_CON */
Imi_ulong lmi_state;

} 1lmi_enable_con_t;

/*
LMI_DISABLE_CON, M_PROTO or M_PCPROTO
*/

typedef struct {
Imi_long 1lmi_primitive; /* LMI_DISABLE_CON */
Imi_ulong lmi_state;

} 1mi_disable_con_t;

/*
LMI_OPTMGMT_REQ, M_PCPROTO
*/

typedef struct {
Imi_long lmi_primitive; /* LMI_OPTMGMT_REQ */
Imi_ulong 1lmi_opt_length;
Imi_ulong lmi_opt_offset;
Imi_ulong 1lmi_mgmt_flags;
} lmi_optmgmt_req_t;

/*
LMI_OPTMGMT_ACK, M_PCPROTO
*/

typedef struct {

136

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

Imi_long 1lmi_primitive;

Imi_ulong lmi_opt_length;
Imi_ulong 1lmi_opt_offset;
Imi_ulong lmi_mgmt_flags;

} 1mi_optmgmt_ack_t;

#undef LMI_DEFAULT

#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

LMI_NEGOTIATE 0x0004
LMI_CHECK 0x0008
LMI_DEFAULT 0x0010
LMI_SUCCESS 0x0020
LMI_FAILURE 0x0040
LMI_CURRENT 0x0080
LMI_PARTSUCCESS 0x0100
LMI_READONLY 0x0200
LMI_NOTSUPPORT 0x0400

LMI_ERROR_IND, M_PROTO or M_PCPROTO

*/

typedef

struct {

Imi_long lmi_primitive;
Imi_ulong 1lmi_errno;
Imi_ulong lmi_reason;
Imi_ulong 1lmi_state;

} 1mi_error_ind_t;

/*

LMI_STATS_IND, M_PROTO

*/

typedef

struct {

Imi_long 1lmi_primitive;
Imi_ulong lmi_interval;
Imi_ulong 1lmi_timestamp;

} 1mi_stats_ind_t;

/*

LMI_EVENT_IND, M_PROTO

*/

typedef

struct {

Imi_long lmi_primitive;
Imi_ulong 1lmi_objectid;
Imi_ulong 1lmi_timestamp;
Imi_ulong lmi_severity;

} 1mi_event_ind_t;

union LMI_primitive {

Imi_long 1lmi_primitive;
1mi_ok_ack_t ok_ack;
1mi_error_ack_t error_ack;
1mi_error_ind_t error_ind;
Imi_stats_ind_t stats_ind;

2014-10-25

/* LMI_OPMGMT_ACK */

/* LMI_ERROR_IND */

/* LMI_STATS_IND */

/* LMI_EVENT_IND */

LMI Header File Listing

137

Appendix A: LMI Header File Listing

};

1mi_event_ind_t event_ind;

union LMI_primitives {

};

#define
#define
#define
#define
#define

Imi_long lmi_primitive;
Imi_info_req_t info_req;
1mi_info_ack_t info_ack;
Imi_attach_req_t attach_req;
Imi_detach_req_t detach_req;
Imi_enable_req_t enable_req;
Imi_disable_req_t disable_req;
1mi_ok_ack_t ok_ack;
Imi_error_ack_t error_ack;
1mi_enable_con_t enable_con;
1mi_disable_con_t disable_con;
1mi_error_ind_t error_ind;
1mi_stats_ind_t stats_ind;
1mi_event_ind_t event_ind;
Imi_optmgmt_req_t optmgmt_req;
Imi_optmgmt_ack_t optmgmt_ack;

LMI_INFO_REQ_SIZE
LMI_INFO_ACK_SIZE
LMI_ATTACH_REQ_SIZE
LMI_DETACH_REQ_SIZE
LMI_ENABLE_REQ_SIZE

sizeof (Imi_info_req_t)
sizeof (Imi_info_ack_t)
sizeof (Imi_attach_req_t)
sizeof (Imi_detach_req_t)
sizeof (Imi_enable_req_t)

#define LMI_DISABLE_REQ_SIZE
#define LMI_OK_ACK_SIZE
#define LMI_ERROR_ACK_SIZE
#define LMI_ENABLE_CON_SIZE
#define LMI_DISABLE_CON_SIZE
#define LMI_ERROR_IND_SIZE
#define LMI_STATS_IND_SIZE
#define LMI_EVENT_IND_SIZE

typedef struct 1lmi_opthdr {
Imi_ulong level;
Imi_ulong name;
Imi_ulong length;
Imi_ulong status;
1mi_uchar valuel[0];

/*

sizeof (Imi_disable_req_t)
sizeof (Imi_ok_ack_t)
sizeof (lmi_error_ack_t)
sizeof (1mi_enable_con_t)
sizeof (lmi_disable_con_t)
sizeof (Imi_error_ind_t)
sizeof (Imi_stats_ind_t)
sizeof (Imi_event_ind_t)

followed by option value

*/
} 1mi_opthdr_t;

#define LMI_LEVEL_COMMON
#define LMI_LEVEL_SDL
#define LMI_LEVEL_SDT
#define LMI_LEVEL_SL
#define LMI_LEVEL_SLS
#define LMI_LEVEL_MTP
#define LMI_LEVEL_SCCP
#define LMI_LEVEL_ISUP
#define LMI_LEVEL_TCAP

138

J\OJ
’q°
Jt?
Jl)
’g?
JM?
°g?
JI)
T

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) LMI Header File Listing

#define LMI_OPT_PROTOCOL 1 /* use struct 1lmi_option */
#define LMI_OPT_STATISTICS 2 /* use struct 1lmi_sta */
#endif /* __LMI_H__ */

2014-10-25 139

Signalling Link Interface (SLI)

Appendix B SLI Header File Listing

#ifndef
#define

typedef
typedef
typedef
typedef

#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

__SS7T_SLI_H__
__SS7_SLI_H__

Imi_long sl_long;
Imi_ulong sl_ulong;
1mi_ushort sl_ushort;
1mi_uchar sl_uchar;

SL_PROTO_BASE

SL_DSTR_FIRST

SL_PDU_REQ

SL_EMERGENCY_REQ
SL_EMERGENCY_CEASES_REQ
SL_START_REQ

SL_STOP_REQ
SL_RETRIEVE_BSNT_REQ
SL_RETRIEVAL_REQUEST_AND_FSNC_REQ
SL_CLEAR_BUFFERS_REQ
SL_CLEAR_RTB_REQ
SL_CONTINUE_REQ
SL_LOCAL_PROCESSOR_OUTAGE_REQ
SL_RESUME_REQ
SL_CONGESTION_DISCARD_REQ
SL_CONGESTION_ACCEPT_REQ
SL_NO_CONGESTION_REQ
SL_POWER_ON_REQ

SL_OPTMGMT _REQ

SL_NOTIFY_REQ

SL_DSTR_LAST

SL_USTR_LAST

SL_PDU_IND

SL_LINK_CONGESTED_IND
SL_LINK_CONGESTION_CEASED_IND
SL_RETRIEVED_MESSAGE_IND
SL_RETRIEVAL_COMPLETE_IND
SL_RB_CLEARED_IND

SL_BSNT_IND

SL_IN_SERVICE_IND

SL_OUT_OF _SERVICE_IND
SL_REMOTE_PROCESSOR_OUTAGE_IND
SL_REMOTE_PROCESSOR_RECOVERED_IND
SL_RTB_CLEARED_IND
SL_RETRIEVAL_NOT_POSSIBLE_IND
SL_BSNT_NOT_RETRIEVABLE_IND
SL_OPTMGMT_ACK

SL_NOTIFY_IND
SL_LOCAL_PROCESSOR_OUTAGE_IND
SL_LOCAL_PROCESSOR_RECOVERED_IND
SL_USTR_FIRST

2014-10-25

o2
0N U WN R IS

R T T T T T T S T S S e S S S S A

SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)

SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)
SL_PROTO_BASE)

SLI Header File Listing

141

Appendix B: SLI Header File Listing

* SLI PROVIDER STATE
*/

#define SLS_POWER_OFF 0
#define SLS_OUT_OF_SERVICE 1
#define SLS_NOT_ALIGNED 2
#define SLS_INITIAL_ALIGNMENT 3
#define SLS_PROVING 4
#define SLS_ALIGNED_READY 5
#define SLS_ALIGNED_NOT_READY 6
#define SLS_IN_SERVICE 7
#define SLS_PROCESSOR_OUTAGE 8
/*

* SLI PROVIDER FLAGS

*/
#define SLF_LOC_PROC_OUT (1<< 0)
#define SLF_REM_PROC_QUT (1< 1)
#define SLF_LOC_IN_SERV (1<< 2)
#define SLF_REM_IN_SERV (1<< 3)
#define SLF_LOC_BUSY (1<< 4)
#define SLF_REM_BUSY (1<< 5)
#define SLF_LOC_EMERG (1<< 6)
#define SLF_EMERGENCY SLF_LOC_EMERG
#define SLF_REM_EMERG (1< 7)
#define SLF_RECV_MSU (1<< 8)
#define SLF_SEND_MSU (1<< 9)
#define SLF_CONG_ACCEPT (1<<10)
#define SLF_CONG_DISCARD (1<<11)
#define SLF_RTB_FULL (1<<12)
#define SLF_L3_CONG_DETECT (1<<13)
#define SLF_L2_CONG_DETECT (1<<14)
#define SLF_LINK_CONGESTED SLF_L2_CONG_DETECT
#define SLF_CONTINUE (1<<15)
#define SLF_LEVEL_3_IND SLF_CONTINUE
#define SLF_CLEAR_RTB (1<<16)
#define SLF_NEED_FLUSH (1<<17)
#define SLF_WAIT_SYNC (1<<18)
#define SLF_REM_ALIGN (1<<19)

/*

* SLI PROTOCOL PRIMITIVES

*/

/*

* SL_PDU_REQ, optional M_PROTO type, with M_DATA block(s)

*/
typedef struct {

sl_long sl_primitive;
sl_ulong sl_mp;

} sl_pdu_req_t;

/*

* SL_PDU_IND, optional M_PROTO type, with M_DATA block(s)

*/

typedef struct {
sl_long sl_primitive;

142 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

sl_ulong sl_mp;
} sl_pdu_ind_t;

/*
* PROTOCOL CONTROL PRIMITIVES
*/

/*
* SL_EMERGENCY_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_emergency_req_t;

/*
* SL_EMERGENCY_CEASES_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_emergency_ceases_req_t;

/*
* SL_START_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_start_req_t;

/*
* SL_STOP_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_stop_req_t;

/*
* SL_RETRIEVE_BSNT_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_retrieve_bsnt_req_t;

/*
* SL_RETRIEVAL_REQUEST_AND_FSNC_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_fsnc;
} sl_retrieval_req_and_fsnc_t;

/*
* SL_CLEAR_BUFFERS_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_clear_buffers_req_t;

2014-10-25

SLI Header File Listing

143

Appendix B: SLI Header File Listing

/*
* SL_CLEAR_RTB_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_clear_rtb_req_t;

/*
* SL_CONTINUE_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_continue_req_t;

/*
* SL_LOCAL_PROCESSOR_OUTAGE_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
3 sl_local_proc_outage_req_t;

/*
* SL_RESUME_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_resume_req_t;

/*
* SL_CONGESTION_DISCARD_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_cong_discard_req_t;

/*
* SL_CONGESTION_ACCEPT_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_cong_accept_req_t;

/*
* SL_NO_CONGESTION_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_no_cong_req_t;

/*
* SL_POWER_ON_REQ, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_power_on_req_t;

144 Version 1.1 Rel

. 7.20141001

Signalling Link Interface (SLI) SLI Header File Listing

/*
* SL_LINK_CONGESTED_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_cong_status; /* congestion status */
sl_ulong sl_disc_status; /* discard status */
} sl_link_cong_ind_t;

/*
* SL_LINK_CONGESTION_CEASED_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_cong_status; /* congestion status */
sl_ulong sl_disc_status; /* discard status */
} sl_link_cong_ceased_ind_t;

/*
* SL_RETRIEVED_MESSAGE_IND, M_PROTO or M_PCPROTO type with M_DATA block(s)
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;
} sl_retrieved_msg_ind_t;

/*
* SL_RETRIEVAL_COMPLETE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_mp;
¥ sl_retrieval_comp_ind_t;

/*
* SL_RETRIEVAL_NOT_POSSIBLE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
¥ sl_retrieval_not_poss_ind_t;

/*
* SL_RB_CLEARED_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_rb_cleared_ind_t;

/*
* SL_BSNT_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;

2014-10-25

145

Appendix B: SLI Header File Listing

sl_ulong sl_bsnt;
} sl_bsnt_ind_t;

/*
* SL_BSNT_NOT_RETRIEVABLE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_bsnt;
} sl_bsnt_not_retr_ind_t;

/*
* SL_IN_SERVICE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_in_service_ind_t;

/*
* SL_OUT_OF_SERVICE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
sl_ulong sl_reason;
} sl_out_of_service_ind_t;

/*

* These reasons for failure as so that upstream module can
* collect statistics per link per ITU-T Q.752 Table 1

* requirements.

*/

#define SL_FAIL_UNSPECIFIED 0x0001
#define SL_FAIL_CONG_TIMEQOUT 0x0002
#define SL_FAIL_ACK_TIMEQUT 0x0004
#define SL_FAIL_ABNORMAL_BSNR 0x0008
#define SL_FAIL_ABNORMAL_FIBR 0x0010
#define SL_FAIL_SUERM_EIM 0x0020
#define SL_FAIL_ALIGNMENT_NOT_POSSIBLE 0x0040
#define SL_FAIL_RECEIVED_SIO 0x0080
#define SL_FAIL_RECEIVED_SIN 0x0100
#define SL_FAIL_RECEIVED_SIE 0x0200
#define SL_FAIL_RECEIVED_SIOS 0x0400
#define SL_FAIL_T1_TIMEQUT 0x0800
/*

* SL_REMOTE_PROCESSOR_OUTAGE_IND, M_PROTO or M_PCPROTO type

*/

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
} sl_rem_proc_out_ind_t;

/*

* SL_REMOTE_PROCESSOR_RECOVERED_IND, M_PROTO or M_PCPROTO type
*/

146 Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) SLI Header File Listing

typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
¥ sl_rem_proc_recovered_ind_t;

/*
* SL_RTB_CLEARED_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
} sl_rtb_cleared_ind_t;

/*
* SL_LOCAL_PROCESSOR_OUTAGE_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
} sl_loc_proc_out_ind_t;

/*
* SL_LOCAL_PROCESSOR_RECOVERED_IND, M_PROTO or M_PCPROTO type
*/
typedef struct {
sl_long sl_primitive;
sl_ulong sl_timestamp;
} sl_loc_proc_recovered_ind_t;

/*
* Generic single argument type
*/
typedef struct {
sl_ulong sl_cmd;
sl_ulong sl_arg;
} sl_cmd_arg_t;

/*
* Generic double argument type
*/
typedef struct {
sl_ulong sl_cmd;
sl_ulong sl_argl;
sl_ulong sl_arg?2;
} sl_cmd_2arg_t;

/*
* Generic triple argument type
*/
typedef struct {
sl_ulong sl_cmd;
sl_ulong sl_argl;
sl_ulong sl_arg2;
sl_ulong sl_arg3;
} sl_cmd_3arg_t;

union SL_primitives {

2014-10-25 147

Appendix B: SLI Header File Listing

};
typedef

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

148

sl_long sl_primitive;

sl_cmd_arg_t cmd_arg;

sl_cmd_2arg_t cmd_2arg;

sl_cmd_3arg_t cmd_3arg;

sl_pdu_req_t pdu_req;

sl_pdu_ind_t pdu_ind;

sl_emergency_req_t emergency_req;
sl_emergency_ceases_req_t emergency_ceases_req;
sl_start_req_t start_req;

sl_stop_req_t stop_req;

sl_retrieve_bsnt_req_t retrieve_bsnt_req;
sl_retrieval_req_and_fsnc_t retrieval_req_and_fsnc;
sl_resume_req_t resume_req;

sl_continue_req_t continue_req;
sl_clear_buffers_req_t clear_buffers_req;
sl_clear_rtb_req_t clear_rtb_req;
sl_local_proc_outage_req_t local_proc_outage_req;
sl_cong_discard_req_t cong_discard_req;
sl_cong_accept_req_t cong_accept_req;
sl_no_cong_req_t no_cong_req;

sl_power_on_req_t power_on_req;

sl_link_cong_ind_t link_cong_ind;
sl_link_cong_ceased_ind_t link_cong_ceased_ind;
sl_retrieved_msg_ind_t retrieved_msg_ind;
sl_retrieval_comp_ind_t retrieval_comp_ind;
sl_retrieval_not_poss_ind_t retrieval_not_poss_ind;
sl_rb_cleared_ind_t rb_cleared_ind;

sl_bsnt_ind_t bsnt_ind;

sl_bsnt_not_retr_ind_t bsnt_not_retr_ind;
sl_in_service_ind_t in_service_ind;
sl_out_of_service_ind_t out_of_service_ind;
sl_rem_proc_out_ind_t rem_proc_out_ind;
sl_rem_proc_recovered_ind_t rem_proc_recovered_ind;
sl_rtb_cleared_ind_t rtb_cleared_ind;
sl_loc_proc_out_ind_t loc_proc_out_ind;
sl_loc_proc_recovered_ind_t loc_proc_recovered_ind;

union SL_primitives sl_prim_t;

SL_CMD_ARG_SIZE sizeof (sl_cmd_arg_t)
SL_CMD_2ARG_SIZE sizeof (sl_cmd_2arg_t)
SL_CMD_3ARG_SIZE sizeof (sl_cmd_3arg_t)
SL_PDU_REQ_SIZE sizeof (sl_pdu_req_t)
SL_PDU_IND_SIZE sizeof (sl_pdu_ind_t)
SL_EMERGENCY_REQ_SIZE sizeof (sl_emergency_req_t)
SL_EMERGENCY_CEASES_REQ_SIZE sizeof (sl_emergency_ceases_req_t)
SL_START_REQ_SIZE sizeof (sl_start_req_t)
SL_STOP_REQ_SIZE sizeof (sl_stop_req_t)
SL_RETRIEVE_BSNT_REQ_SIZE sizeof(sl_retrieve_bsnt_req_t)
SL_RETRIEVAL_REQ_AND_FSNC_SIZE sizeof(sl_retrieval_req_and_fsnc_t)
SL_RESUME_REQ_SIZE sizeof (sl_resume_req_t)
SL_CONTINUE_REQ_SIZE sizeof (sl_continue_req_t)
SL_CLEAR_BUFFERS_REQ_SIZE sizeof (sl_clear_buffers_req_t)
SL_CLEAR_RTB_REQ_SIZE sizeof (sl_clear_rtb_req_t)

SL_LOCAL_PROC_OUTAGE_REQ_SIZE sizeof(sl_local_proc_outage_req_t)

Version 1.1 Rel

. 7.20141001

Signalling Link Interface (SLI)

#define SL_CONG_DISCARD_REQ_SIZE
#define SL_CONG_ACCEPT_REQ_SIZE
#define SL_NO_CONG_REQ_SIZE
#define SL_POWER_ON_REQ_SIZE
#define SL_LINK_CONG_IND_SIZE

#define SL_LINK_CONG_CEASED_IND_SIZE

#define SL_RETRIEVED_MSG_IND_SIZ

#define SL_RETRIEVAL_COMP_IND_SIZE
#define SL_RETRIEVAL_NOT_POSS_IND_SIZE

#define SL_RB_CLEARED_IND_SIZE
#define SL_BSNT_IND_SIZE

#define SL_BSNT_NOT_RETR_IND_SIZ
#define SL_IN_SERVICE_IND_SIZE
#define SL_OUT_OF_SERVICE_SIZE
#define SL_REM_PROC_OUT_IND_SIZE

#define SL_REM_PROC_RECOVERED_IND_SIZE

#define SL_RTB_CLEARED_IND_SIZE
#define SL_LOC_PROC_OUT_IND_SIZE

#define SL_LOC_PROC_RECOVERED_IND_SIZE

#define SL_OPT_PROTOCOL
#define SL_OPT_STATISTICS
#define SL_OPT_CONFIG
#define SL_OPT_STATEM
#define SL_OPT_STATS

#endif

2014-10-25

E

E

SLI Header File Listing

sizeof (sl_cong_discard_req_t)
sizeof (sl_cong_accept_req_t)

sizeof (sl_no_cong_req_t)

sizeof (sl_power_on_req_t)

sizeof (s1_link_cong_ind_t)

sizeof (sl_link_cong_ceased_ind_t)
sizeof (sl_retrieved_msg_ind_t)
sizeof (sl_retrieval_comp_ind_t)
sizeof (sl_retrieval _not_poss_ind_t)
sizeof (sl_rb_cleared_ind_t)

sizeof (sl_bsnt_ind_t)

sizeof (sl_bsnt_not_retr_ind_t)
sizeof (sl_in_service_ind_t)

sizeof (sl_out_of_service_ind_t)
sizeof (sl_rem_proc_out_ind_t)
sizeof (sl_rem_proc_recovered_ind_t)
sizeof (sl_rtb_cleared_ind_t)

sizeof (sl_loc_proc_out_ind_t)
sizeof (sl_loc_proc_recovered_ind_t)

LMI_OPT_PROTOCOL
LMI_OPT_STATISTICS

3
4
5

/* use struct sl_config */
/* use struct sl_statem */
/* use struct sl_stats */

/* __SS7T_SLI_H__ */

149

Signalling Link Interface (SLI) Glossary

Glossary

Signalling Data Link Service Data Unit
A grouping of SDL user data whose boundaries are preserved from one end of the
signalling data link connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer of data
between to signalling data link users.

SDL provider
The signalling data link layer protocol that provides the services of the signalling data
link interface.

SDL user
The user-level application or user-level or kernel-level protocol that accesses the services

of the signalling data link layer.

Local management
The phase in connection and connectionless modes in which a SDL user initializes a
stream and attaches a PPA address to the stream. Primitives in this phase generate
local operations only.

PPA

The point at which a system attaches itself to a physical communications medium.

PPA identifier
An identifier of a particular physical medium over which communication transpires.

2014-10-25 151

Signalling Link Interface (SLI)

Acronyms

ITU-T
LMS Provider
LMS
LMS User
LM

PPA
SDLI
SDL SDU
SDLS
SDL
SDTI
SDTS
SDT

SLI

SLS

SL

SS7

2014-10-25

International Telecommunications Union - Telecom Sector
A provider of Local Management Services
Local Management Service

A user of Local Management Services
Local Management

Physical Point of Attachment

Signalling Data Link Interface

Signalling Data Link Service Data Unit
Signalling Data Link Service

Signalling Data Link

Signalling Data Terminal Interface
Signalling Data Terminal Service
Signalling Data Terminal

Signalling Link Interface

Signalling Link Service

Signalling Link

Signalling System No. 7

Acronyms

153

Signalling Link Interface (SLI) References

References

[1] ITU-T Recommendation Q.700, Introduction to CCITT Signalling System No. 7, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

2] ITU-T Recommendation Q.701, Functional Description of the Message Transfer Part (MTP)
of Signalling System No. 7, March 1993, (Geneva), ITU, ITU-T Telecommunication Stan-
dardization Sector of ITU, (Previously “CCITT Recommendation”).

[3] ITU-T Recommendation Q.702, Signalling System No. 7—Signalling Data Link, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[4] ITU-T Recommendation Q.703, Signalling System No. 7—Signalling Link, March 1993,
(Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[5] ITU-T Recommendation Q.704, Message Transfer Part—Signalling Network Functions and
Messages, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector
of ITU, (Previously “CCITT Recommendation”).

[6] Geoffrey Gerrietts; Dave Grothe, Mikel Matthews, Dave Healy, CDI—Application Program
Interface Guide, March 1999, (Savoy, IL), GCOM, Inc.

[7] ITU-T Recommendation Q.771, Signalling System No. 7—Functional Description of Trans-
action Capabilities, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization
Sector of ITU, (Previously “CCITT Recommendation”).

2014-10-25 155

http://www.itu.int/rec/T-REC-Q.700/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.701/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.702/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.703/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.704/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.771/
http://www.itu.int/
http://www.itu.int/

Signalling Link Interface (SLI) Licenses

Licenses

All code presented in this manual is licensed under the [GNU Affero General Public License],
page 157. The text of this manual is licensed under the [GNU Free Documentation License], page 167,
with no invariant sections, no front-cover texts and no back-cover texts. Please note, however, that
it is just plain wrong to modify statements of, or attribute statements to, the Author or OpenSS7
Corporation.

GNU Affero General Public License

The GNU Affero General Public License.
Version 3, 19 November 2007
Copyright (©) 2007 Free Software Foundation, Inc. http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of
works, specifically designed to ensure cooperation with the community in the case of network server
software.

The licenses for most software and other practical works are designed to take away your freedom
to share and change the works. By contrast, our General Public Licenses are intended to guarantee
your freedom to share and change all versions of a program—to make sure it remains free software
for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge
for them if you wish), that you receive source code or can get it if you want it, that you can change
the software or use pieces of it in new free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights with two steps: (1) assert
copyright on the software, and (2) offer you this License which gives you legal permission to copy,
distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate versions
of the program, if they receive widespread use, become available for other developers to incorpo-
rate. Many developers of free software are heartened and encouraged by the resulting cooperation.
However, in the case of software used on network servers, this result may fail to come about. The
GNU General Public License permits making a modified version and letting the public access it on
a server without ever releasing its source code to the public.

The GNU Affero General Public License is designed specifically to ensure that, in such cases, the
modified source code becomes available to the community. It requires the operator of a network
server to provide the source code of the modified version running there to the users of that server.
Therefore, public use of a modified version, on a publicly accessible server, gives the public access
to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was designed to
accomplish similar goals. This is a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

2014-10-25 157

http://fsf.org/

Licenses texi/agpl3.texi

Terms and Conditions

0.

158

Definitions.
“This License” refers to version 3 of the GNU Affero General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of works, such as semi-
conductor masks.

“The Program” refers to any copyrightable work licensed under this License. Each licensee is
addressed as “you”. “Licensees” and “recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work in a fashion requiring
copyright permission, other than the making of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based on the Program.

To “propagate” a work means to do anything with it that, without permission, would make you
directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with
or without modification), making available to the public, and in some countries other activities
as well.

To “convey” a work means any kind of propagation that enables other parties to make or receive
copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays “Appropriate Legal Notices” to the extent that it includes
a convenient and prominently visible feature that (1) displays an appropriate copyright notice,
and (2) tells the user that there is no warranty for the work (except to the extent that warranties
are provided), that licensees may convey the work under this License, and how to view a copy
of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

Source Code.

The “source code” for a work means the preferred form of the work for making modifications
to it. “Object code” means any non-source form of a work.

A “Standard Interface” means an interface that either is an official standard defined by a
recognized standards body, or, in the case of interfaces specified for a particular programming
language, one that is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which
is not part of that Major Component, and (b) serves only to enable use of the work with
that Major Component, or to implement a Standard Interface for which an implementation is
available to the public in source code form. A “Major Component”, in this context, means a
major essential component (kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to produce the work, or an
object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all the source code needed
to generate, install, and (for an executable work) run the object code and to modify the work,
including scripts to control those activities. However, it does not include the work’s System Li-
braries, or general-purpose tools or generally available free programs which are used unmodified
in performing those activities but which are not part of the work. For example, Correspond-
ing Source includes interface definition files associated with source files for the work, and the

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

source code for shared libraries and dynamically linked subprograms that the work is specif-
ically designed to require, such as by intimate data communication or control flow between
those subprograms and other parts of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.
All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work

is covered by this License only if the output, given its content, constitutes a covered work. This
License acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for
the sole purpose of having them make modifications exclusively for you, or provide you with
facilities for running those works, provided that you comply with the terms of this License in
conveying all material for which you do not control copyright. Those thus making or running
the covered works for you must do so exclusively on your behalf, under your direction and
control, on terms that prohibit them from making any copies of your copyrighted material
outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated below.
Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any applicable
law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December
1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of tech-
nological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation
or modification of the work as a means of enforcing, against the work’s users, your or third
parties’ legal rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copy-
right notice; keep intact all notices stating that this License and any non-permissive terms
added in accord with section 7 apply to the code; keep intact all notices of the absence of any
warranty; and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer support
or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet
all of these conditions:

a. The work must carry prominent notices stating that you modified it, and giving a relevant
date.

2014-10-25 159

Licenses texi/agpl3.texi

160

b. The work must carry prominent notices stating that it is released under this License
and any conditions added under section 7. This requirement modifies the requirement in
section 4 to “keep intact all notices”.

c. You must license the entire work, as a whole, under this License to anyone who comes into
possession of a copy. This License will therefore apply, along with any applicable section
7 additional terms, to the whole of the work, and all its parts, regardless of how they are
packaged. This License gives no permission to license the work in any other way, but it
does not invalidate such permission if you have separately received it.

d. If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal
Notices, your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as
to form a larger program, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not used to limit the access or
legal rights of the compilation’s users beyond what the individual works permit. Inclusion of
a covered work in an aggregate does not cause this License to apply to the other parts of the
aggregate.

Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of
this License, in one of these ways:

a. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by the Corresponding Source fixed on a durable physical
medium customarily used for software interchange.

b. Convey the object code in, or embodied in, a physical product (including a physical dis-
tribution medium), accompanied by a written offer, valid for at least three years and valid
for as long as you offer spare parts or customer support for that product model, to give
anyone who possesses the object code either (1) a copy of the Corresponding Source for all
the software in the product that is covered by this License, on a durable physical medium
customarily used for software interchange, for a price no more than your reasonable cost
of physically performing this conveying of source, or (2) access to copy the Corresponding
Source from a network server at no charge.

c. Convey individual copies of the object code with a copy of the written offer to provide the
Corresponding Source. This alternative is allowed only occasionally and noncommercially,
and only if you received the object code with such an offer, in accord with subsection 6b.

d. Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same
place at no further charge. You need not require recipients to copy the Corresponding
Source along with the object code. If the place to copy the object code is a network
server, the Corresponding Source may be on a different server (operated by you or a third
party) that supports equivalent copying facilities, provided you maintain clear directions
next to the object code saying where to find the Corresponding Source. Regardless of what
server hosts the Corresponding Source, you remain obligated to ensure that it is available
for as long as needed to satisfy these requirements.

e. Convey the object code using peer-to-peer transmission, provided you inform other peers

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

where the object code and Corresponding Source of the work are being offered to the
general public at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything
designed or sold for incorporation into a dwelling. In determining whether a product is a
consumer product, doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a typical or common use of
that class of product, regardless of the status of the particular user or of the way in which the
particular user actually uses, or expects or is expected to use, the product. A product is a
consumer product regardless of whether the product has substantial commercial, industrial or
non-consumer uses, unless such uses represent the only significant mode of use of the product.

“Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work
in that User Product from a modified version of its Corresponding Source. The information
must suffice to ensure that the continued functioning of the modified object code is in no case
prevented or interfered with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession
and use of the User Product is transferred to the recipient in perpetuity or for a fixed term
(regardless of how the transaction is characterized), the Corresponding Source conveyed under
this section must be accompanied by the Installation Information. But this requirement does
not apply if neither you nor any third party retains the ability to install modified object code
on the User Product (for example, the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to continue
to provide support service, warranty, or updates for a work that has been modified or installed
by the recipient, or for the User Product in which it has been modified or installed. Access
to a network may be denied when the modification itself materially and adversely affects the
operation of the network or violates the rules and protocols for communication across the
network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available
to the public in source code form), and must require no special password or key for unpacking,
reading or copying.

7. Additional Terms.

“Additional permissions” are terms that supplement the terms of this License by making ex-
ceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions apply only to part of the
Program, that part may be used separately under those permissions, but the entire Program
remains governed by this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written
to require their own removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work, for which you have or can
give appropriate copyright permission.

2014-10-25 161

Licenses texi/agpl3.texi

162

Notwithstanding any other provision of this License, for material you add to a covered work,
you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a. Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b. Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c. Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original
version; or

d. Limiting the use for publicity purposes of names of licensors or authors of the material; or

Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f. Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the
recipient, for any liability that these contractual assumptions directly impose on those
licensors and authors.

All other non-permissive additional terms are considered “further restrictions” within the mean-
ing of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may
remove that term. If a license document contains a further restriction but permits relicensing
or conveying under this License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does not survive such relicensing
or conveying.

If you add terms to a covered work in accord with this section, you must place, in the relevant
source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically
terminate your rights under this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, you do not qualify to receive new licenses for the same material
under section 10.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

9.

10.

11.

Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other
than this License grants you permission to propagate or modify any covered work. These actions
infringe copyright if you do not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from the
original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an organization, or substantially
all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a
copy of the work also receives whatever licenses to the work the party’s predecessor in interest
had or could give under the previous paragraph, plus a right to possession of the Corresponding
Source of the work from the predecessor in interest, if the predecessor has it or can get it with
reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for
exercise of rights granted under this License, and you may not initiate litigation (including a
cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making,
using, selling, offering for sale, or importing the Program or any portion of it.

Patents.

A “contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
“contributor version”.

A contributor’s “essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some
manner, permitted by this License, of making, using, or selling its contributor version, but do
not include claims that would be infringed only as a consequence of further modification of the
contributor version. For purposes of this definition, “control” includes the right to grant patent
sublicenses in a manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the
contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise
run, modify and propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a
patent or covenant not to sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a patent against the
party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms
of this License, through a publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to
deprive yourself of the benefit of the patent license for this particular work, or (3) arrange,
in a manner consistent with the requirements of this License, to extend the patent license to

2014-10-25 163

Licenses texi/agpl3.texi

12.

13.

14.

164

downstream recipients. “Knowingly relying” means you have actual knowledge that, but for
the patent license, your conveying the covered work in a country, or your recipient’s use of the
covered work in a country, would infringe one or more identifiable patents in that country that
you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of
the parties receiving the covered work authorizing them to use, propagate, modify or convey a
specific copy of the covered work, then the patent license you grant is automatically extended
to all recipients of the covered work and works based on it.

A patent license is “discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that
are specifically granted under this License. You may not convey a covered work if you are a
party to an arrangement with a third party that is in the business of distributing software,
under which you make payment to the third party based on the extent of your activity of
conveying the work, and under which the third party grants, to any of the parties who would
receive the covered work from you, a discriminatory patent license (a) in connection with copies
of the covered work conveyed by you (or copies made from those copies), or (b) primarily for
and in connection with specific products or compilations that contain the covered work, unless
you entered into that arrangement, or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or other
defenses to infringement that may otherwise be available to you under applicable patent law.

No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that contra-
dict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all.
For example, if you agree to terms that obligate you to collect a royalty for further conveying
from those to whom you convey the Program, the only way you could satisfy both those terms
and this License would be to refrain entirely from conveying the Program.

Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your modified
version must prominently offer all users interacting with it remotely through a network (if
your version supports such interaction) an opportunity to receive the Corresponding Source
of your version by providing access to the Corresponding Source from a network server at no
charge, through some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered by version
3 of the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU General Public License
into a single combined work, and to convey the resulting work. The terms of this License will
continue to apply to the part which is the covered work, but the work with which it is combined
will remain governed by version 3 of the GNU General Public License.

Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero
General Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

Each version is given a distinguishing version number. If the Program specifies that a certain
numbered version of the GNU Affero General Public License “or any later version” applies to it,
you have the option of following the terms and conditions either of that numbered version or of
any later version published by the Free Software Foundation. If the Program does not specify
a version number of the GNU Affero General Public License, you may choose any version ever
published by the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero
General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no additional
obligations are imposed on any author or copyright holder as a result of your choosing to follow
a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE
COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM
“AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSE-
QUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING REN-
DERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given local
legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a
warranty or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

2014-10-25 165

Licenses

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and change
under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each
source file to most effectively state the exclusion of warranty; and each file should have at least the
“copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.

Copyright (C) year name of author

This program is free software: you can redistribute it and/or modify

it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or (at

your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License

along with this program. If not, see http://www.gnu.org/licenses/.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a network, you should also make sure that
it provides a way for users to get its source. For example, if your program is a web application, its
interface could display a “Source” link that leads users to an archive of the code. There are many
ways you could offer source, and different solutions will be better for different programs; see section
13 for the specific requirements.
You should also get your employer (if you work as a programmer) or school, if any, to sign a
“copyright disclaimer” for the program, if necessary. For more information on this, and how to
apply and follow the GNU AGPL, see http://wuw.gnu.org/licenses/.

166 Version 1.1 Rel. 7.20141001

http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

Signalling Link Interface (SLI) Licenses

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.3, 3 November 2008

Copyright (©) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secon-
darily, this License preserves for the author and publisher a way to get credit for their work,
while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics,
a Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

2014-10-25 167

http://fsf.org/

Licenses texi/fdl13.texi

168

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup, or absence of
markup, has been arranged to thwart or discourage subsequent modification by readers is not
Transparent. An image format is not Transparent if used for any substantial amount of text.
A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain Ascil without markup, Tex-
info input format, LaTgX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Ex-
amples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, “Title Page” means the text near
the most prominent appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated as
verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in
or with each Opaque copy a computer-network location from which the general network-using
public has access to download using public-standard network protocols a complete Transparent
copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure
that this Transparent copy will remain thus accessible at the stated location until at least one
year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Usein the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

Preserve all the copyright notices of the Document.

=

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

2014-10-25 169

Licenses texi/fdl13.texi

170

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on the
Title Page. If there is no section Entitled “History” in the Document, create one stating
the title, year, authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that
the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI) Licenses

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate”
if the copyright resulting from the compilation is not used to limit the legal rights of the com-
pilation’s users beyond what the individual works permit. When the Document is included in
an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent
of covers if the Document is in electronic form. Otherwise they must appear on printed covers
that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or
all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing the
actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void,
and will automatically terminate your rights under this License.

2014-10-25 171

Licenses texi/fdl13.texi

10.

11.

172

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time
you have received notice of violation of this License (for any work) from that copyright holder,
and you cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated
and not permanently reinstated, receipt of a copy of some or all of the same material does not
give you any rights to use it.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns. See http://www.gnu.
org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of any
later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies
that a proxy can decide which future versions of this License can be used, that proxy’s public
statement of acceptance of a version permanently authorizes you to choose that version for the
Document.

RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit
those works. A public wiki that anybody can edit is an example of such a server. A “Massive
Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable
works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business
in San Francisco, California, as well as future copyleft versions of that license published by that
same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Version 1.1 Rel. 7.20141001

http://www.gnu.org/copyleft/
http://www.gnu.org/copyleft/

Signalling Link Interface (SLI) Licenses

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:
Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ‘‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . . Texts.”
line with this:
with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

2014-10-25 173

Signalling Link Interface (SLI)

Index

C

close(28) ...t 14
E

errno(3) ...t 37, 66
G

getmsg(2s) ... 9
L

license, AGPL 157
license, FDL..... o i 167
license, GNU Affero General Public License... 157
license, GNU Free Documentation License 167
LMI_ATTACH_PENDING............ 34, 38, 42, 44, 66
LMI_ATTACH_REQo, 13, 14
LMI_ATTACH_REQ.......coviiiniiiiiinnnn. 15
LMI_ATTACH_REQ......... 33, 37, 38, 42, 43, 44, 66
Imi_attach_req t........cooiiiiiiiiiiiaan. 44
LMI_BADADDRESS..... 35, 39, 45, 47, 51, 54, 59, 64

123
LMI_BADADDRTYPE. ... 35, 39, 45, 47, 51, 54, 59, 64
123

LMI_BADDIAL 35, 39, 45, 47, 51, 54, 59, 64, 123
LMI_BADDIALTYPE.... 35, 40, 45, 48, 51, 55, 59, 64

123
LMI_BADDISPOSAL.... 35, 40, 45, 48, 51, 55, 59, 64

123
LMI_BADFRAME ... 35, 40, 45, 48, 51, 55, 59, 64, 123
LMI_BADPPA 35, 40, 45, 48, 51, 55, 59, 64, 123
LMI_BADPRIM.... 35, 40, 45, 48, 51, 55, 59, 65, 123
LMI_BUSY........ 36, 41, 46, 49, 52, 56, 60, 65, 124
LMI_CALLREJECT..... 36, 41, 46, 49, 52, 56, 60, 65,

124
IMI_CHECK.......ovviiiiennnnnn. 58, 63, 122, 127
Imi_correct_primitive....................... 33
LMI_CRCERR..... 36, 40, 45, 48, 51, 55, 60, 65, 124
LMI_CURRENTccovnn.... 59, 63, 123, 127
LMI_DEFAULTcoovvun.... 58, 63, 122, 127
LMI_DETACH_PENDING............ 34, 38, 42, 47, 67
LMI_DETACH_REQ, 13, 14
LMI_DETACH REQ...... ..ot 15
LMI_DETACH_REQ..............oooooi ... 33, 37, 47
Imi_detach_req t............ ..., 47
LMI_DEVERR .. 37, 41, 46, 49, 52, 56, 61, 66, 71, 73,

75, 77, 82, 90, 92, 94, 96, 100, 107, 109, 113

116, 121, 125, 129
LMI_DISABLE_CON.......euuueenneannnnannnenn. 17
LMI_DISABLE_CON 38, 42, 54, 57, 66

2014-10-25

Index
Imi_disable_con_t...........coiiiiiiiiininn. 57
LMI_DISABLE_PENDING........... 38, 42, 54, 57, 66
LMI_DISABLE_REQ......... .o 13
LMI_DISABLE_REQ...... ...t 17
LMI_DISABLE_REQ......... ..., 37, 54
Imi_disable_req_t............... ..l 54
LMI_DISABLED.... 14, 34, 38, 42, 44, 47, 50, 54, 57

66
LMI_DISC..... 35, 40, 45, 48, 51, 55, 59, 65, 71, 77,

96, 100, 106, 108, 113, 115, 120, 124, 128

LMI_DLE_EQT.... 36, 40, 45, 48, 52, 55, 60, 65, 124
LMI_DSRTIMEQUT..... 37, 41, 46, 49, 52, 56, 61, 66,
125
LMI_ENABLE _CON............. 16, 38, 42, 50, 53, 66
Imi_enable_con_t...........ccooiiiiiiiiiii. 53
LMI_ENABLE_PENDING............ 38, 42, 50, 53, 66
LMI_ENABLE_REQ.. 13, 16, 34, 37, 38, 42, 50, 57, 66
Imi_enable_req_t........cooviiiiiiiiiiiiiin 50
LMI_ENABLED..... 34, 38, 42, 50, 53, 54, 66, 69, 70,

71, 72, 74, 76, 78, 80, 81, 83, 84, 85, 86, 87, 83
89, 90, 91, 93, 95, 96, 97, 98, 99, 100, 101, 103
105, 106, 108, 110, 111, 112, 114, 115, 117

118, 119, 120
Imi_errno.........coovvnnnnnnn. 35, 37, 64, 66
LMI_ERROR_ACKooiii i 13
LMI_ERROR_ACKot 15
LMI_ERROR_ACKot 16
LMI_ERROR_ACKoiiii e 17

LMI_ERROR_ACK .. 35, 37, 39, 44, 47, 50, 54, 59, 71,
72, 74, 76, 81, 90, 91, 93, 96, 99, 106, 108, 112,
115, 120, 123, 128, 131

Imi_error_ack_t..........coiiiiiiiiiiiiin., 35
LMI_ERROR_INDcoiitiiienin i 18
LMI_ERROR_INDcoiiiiiiiniieineennn. 38, 64
Imi_error_ind_t..........coiiiiiiiiniiiniinn, 64
Imi_error_primitive.............. 37
LMI_ERRORK_ACKttt 16
LMI_ERRORK_ACKttt 17
LMI_EVENT ... 36, 40, 45, 48, 51, 55, 60, 65, 71, 72,

74, 77, 81, 90, 91, 93, 96, 100, 107, 108, 113,
115, 120, 124, 128

LMI_EVENT_IND..........cooovnn... 19, 38, 69, 128
Imi_event_ind_t...........ccoiiiiiiniiininn, 69
LMI_FAILURE......... ..., 62, 126

LMI_FATALERR.... 36, 40, 45, 48, 51, 55, 60, 65, 71,
72, 74, 77, 81, 90, 91, 93, 96, 100, 107, 109,
113, 116, 121, 124, 128

LMI_FORMAT 36, 40, 46, 48, 52, 55, 60, 65, 124
LMI_HDLC_ABORT..... 36, 40, 46, 48, 52, 55, 60, 65,
124

LMI_HDLC_IDLE.. 36, 41, 46, 49, 52, 56, 60, 66, 124

175

Index

LMI_HDLC_NOTIDLE... 36, 41, 46, 49, 52, 56, 60, 66

125
Imi_header_len.............cciiiiirinenenan.. 43
LMI_INCOMPLETE..... 36, 41, 46, 49, 52, 56, 60, 65,

124
LMI_INFO_ACK............... 14, 37, 39, 42, 44, 47
Imi_info_ack_t ...t 42
LMI_INFO_REQ...........coovnn.. 13, 14, 37, 39, 42
Imi_info_req_t.........l 39
LMI_INITFAILED..... 36, 40, 45, 48, 51, 55, 60, 65,

71, 124
Imi_dintervalc. ... 68
LMI_LAN_COLLISIONS.... 37, 41, 46, 49, 52, 56, 61,

66, 125
LMI_LAN_NOSTATION.. 37, 41, 46, 49, 52, 56, 61, 66,

125
LMI_LAN_REFUSED.... 37, 41, 46, 49, 52, 56, 61, 66

125
LMI_LOSTCTS 37, 41, 46, 49, 52, 56, 61, 66, 125
Imi_max_SAU ...ttt 43
Imi_mgmt_flags 58, 62, 63, 122, 126, 127
Imi min_sdu..........oiiiiiiiiiii., 43
LMI_NEGOTIATE................... 58, 63, 122, 127

LMI_NOANSWER ... 36, 41, 46, 49, 52, 56, 60, 65, 124

LMI_NOTSUPP 36, 40, 45, 48, 51, 55, 60, 65, 124
LMI_NOTSUPPORTcoiiiiiiinenn 62, 126
Imi_objectid........... i 69
LMI_OK_ACK. ..ottt 13
LMI_OK_ACK. ..ottt e 15
LMI_OK_ACK......coovviiiiiiinnnnnn. 33, 37, 44, 47
Imi_ok_ack_tooiiiiiii i 33
Imi_opt_length.................. 58, 62, 122, 126
Imi_opt_offset.................. 58, 62, 122, 126
LMI_OPTMGMT_ACK. ... ot 17
LMI_OPTMGMT_ACK........covvvvnnn 38, 59, 62, 122
Imi_optmgmt_ack_t................. 62, 126
LMI_OPTMGMT _REQ........ccouiiiiiiiiiinnnn. 13
LMI_OPTMGMT_REQ....... ...ttt 17
LMI_OPTMGMT_REQ 37, 58, 62, 63, 122, 126
Imi_optmgmt_req t.............. 58, 122

LMI_OUTSTATE. ... 36, 40, 45, 48, 51, 55, 60, 65, 71,
72, 74, 77, 82, 90, 92, 94, 96, 100, 107, 109,
113, 116, 121, 124, 129

LMI_OVERRUN 36, 40, 46, 48, 52, 55, 60, 65, 124

LMI_PARTSUCCESSccoiviiiinnn.. 62, 126
IMi_PPa .t 44
Imi_ppa_addrcoiiiiiiiiii 43
Imi_ppa_style.........coooiiiinnnnn. 43, 44, 47

Imi_primitive .. 33, 35, 39, 42, 44, 47, 50, 53, 54,
57, 58, 62, 64, 68, 69, 122, 126

LMI_PROTOSHORT..... 36, 40, 45, 48, 51, 55, 60, 65,
71, 73, 75, 77, 82, 90, 92, 94, 96, 100, 107, 109,
113, 116, 121, 124, 129

LMI_QUIESCENT.. 37, 41, 46, 49, 52, 56, 61, 66, 125

LMI_READONLY....... ..., 62, 126
Imi_reasomouiiiiii .. 37, 66
176

Imi_rem...... ..o 50
LMI_RESUMED.... 37, 41, 46, 49, 52, 56, 61, 66, 125
Imi_severity 69
Imi_state................... 33, 38, 42, 53, 57, 66
LMI_STATS_INDutrtiiiiiiiiiiiiiiiinnnn 18
LMI_STATS_INDotiiiiiiiiiiiiennn 38, 68
Imi_stats_ind_t...............l 68
LMI_STYLEL. ... 43
LMI_STYLE2 ..., 43, 44, 47
LMI_SUCCESS..............ooiiiint. 62, 126

LMI_SYSERR .. 36, 37, 40, 45, 48, 51, 55, 60, 65, 66
71, 73, 75, 77, 82, 90, 92, 94, 96, 100, 107, 109
113, 116, 121, 124, 129

Imi_timestampcoovviiiiiinnnnnnn 68, 69
LMI_TOOSHORT ... 36, 40, 46, 48, 52, 55, 60, 65, 124
LMI_UNATTACHED...... 14, 33, 34, 38, 42, 44, 47, 66

LMI_UNSPEC .. 35, 39, 45, 47, 51, 54, 59, 64, 71, 72,
74, 77, 81, 90, 91, 93, 96, 100, 106, 108, 112,
115, 120, 123, 128

LMI_UNUSABLEcoovvnnnnn... 33, 38, 42, 66

Imi_versionvviiiiiiniiiniieennn, 42

LMI_WRITEFAIL.. 36, 40, 45, 48, 51, 55, 60, 65, 124

M
M_DATA .« 83, 84, 101, 103, 104
M_PCPROTO ... 33, 35, 39, 42, 43, 58, 62, 72, 74, 76

79, 81, 85, 87, 89, 91, 93, 95, 97, 98, 99, 106,
108, 110, 112, 115, 120, 122, 126

M_PROTO .. 36, 39, 40, 42, 43, 44, 45, 47, 48, 50, 51,
53, 54, 55, 57, 58, 60, 64, 65, 68, 69, 70, 71, 72,
73, 74, 75, 76, T7, 78, 79, 81, 82, 83, 84, 85, 87
90, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 103
105, 106, 107, 108, 109, 110, 111, 112, 113, 114,
115, 116, 117, 118, 119, 120, 121, 122, 124, 129

(0)

0pen(28) ...t 14, 43
P

putmsg(2s) ... 9
S

Sl _bSNt ..t 97, 98
SL_BSNT_IND......coviiiiiiiinnnnn, 25, 96, 97
sl _bsnt_ind_t........ ... 97
sl_bsnt_not_retr_ind_t...................... 98
SL_BSNT_NOT_RETRIEVABLE_IND......... 25, 96, 98
SL_CLEAR_BUFFERS_REQ..........cciviiiuinnn.. 27
SL_CLEAR_BUFFERS_REQ 106, 110, 111
sl_clear_buffers_req_t..................... 106
SL_CLEAR_RTB_REQ...... ..o, 27
SL_CLEAR_RTB_REQ............ .o, 108, 111

Version 1.1 Rel. 7.20141001

Signalling Link Interface (SLI)

sl_clear_rtb_req_t......................... 108
sl_cong_accept_req_t................., 91
sl_cong_discard_req_t....................... 89
sl_cong _statusoovvviiinnn... 85, 87
SL_CONGESTION_ACCEPT_REQ............ 24, 89, 91
SL_CONGESTION_CEASED_IND 87
SL_CONGESTION_DISCARD_REQ............... 24, 89
SL_CONTINUE_REQ..........cooiiiiiiii.n. 29
SL_CONTINUE_REQ....... ... oiiiiiiiinn.. 120
sl_continue_req_toiiiiiiiiaan. 120
sl disc_statuscoiviiiiiiinnnnnnnn 85, 87
SL_EMERGENCY_CEASES_REQ..................... 20
SL_EMERGENCY_CEASES_REQ..................... 74
sl_emergency_ceases_req_t 74
SL_EMERGENCY_REQ........ ..., 20
SL_EMERGENCY_REQ........ ...ttt 72
sl_emergency_req_t;ooiuiuiuiiiiinnnnn. 72
SL_FAIL_ABNORMAL_BSNR................... 77,79
SL_FAIL_ABNORMAL_FIBR..............c..... 77,79
SL_FAIL_ACK_TIMEQUT.............covvenn.. 77,79
SL_FAIL_ALIGNMENT_NOT_POSSIBLE......... 77,79
SL_FAIL_CONG_TIMEQUTc..oeun.. 77,79
SL_FAIL_RECEIVED_SIE 77, 80
SL_FAIL_RECEIVED_SINc...c.... 77, 80
SL_FAIL_RECEIVED_SIOcoovenn.. 77, 80
SL_FAIL_RECEIVED_SIOScc..... 77, 80
SL_FAIL_SUERM_EIM.............c.cccun.... 77,79
SL_FAIL_T1 _TIMEOUT..........c.covvuunvenn.. 77, 80
SL_FAIL_UNSPECIFIED...........ocvuvvenn.. 76, 79
Sl _fSnC ... 99
SL_IN_SERVICE_IND........cooiiniiiininnennnn. 21
SL_IN_SERVICE_IND..........c.covvuiunen... 76, 78
sl_in_service_ind_t......................... 78
sl_link_cong_ceased_ind_t 87
sl_link cong_ind_t 85
SL_LINK_CONGESTED_IND 23, 85
SL_LINK_CONGESTION_CEASED_IND...... 23, 86, 88
SL_LINK_CONGESTION_IND.................. 86, 88
sl_loc_proc_out_ind_t...................... 114
sl_loc_proc_recovered_ind_t............... 117
sl_local_proc_outage_req t................ 112
SL_LOCAL_PROCESSOR_OUTAGE_IND.............. 28
SL_LOCAL_PROCESSOR_OUTAGE_IND........ 114, 117
SL_LOCAL_PROCESSOR_OUTAGE_REQ.............. 28
SL_LOCAL_PROCESSOR_OUTAGE_REQ........ 112, 115
SL_LOCAL_PROCESSOR_RECOVERED_IND.......... 28
SL_LOCAL_PROCESSOR_RECOVERED_IND 114, 117
SLMD vttt 83, 84, 101, 103
sl no_cong req t................ ...l 93
SL_NO_CONGESTION_REQ 24, 93
SL_NOTIFY_INDcoiininiinennenns 31, 130
SL_NOTIFY_REQ........ceeeeeeennn... 31, 128, 130
SL_OPTMGMT_ACK ..o, 30, 123, 126
SL_OPTMGMT_REQ..........c.c..... 30, 122, 126, 127
SL_OUT_OF_SERVICE_IND............ccovvvnn... 22
SL_OUT_OF_SERVICE_IND................... 76, 79

2014-10-25

Index
sl_out_of_service_ind_t..................... 79
SL_PDU_IND. ...ttt e e e 22
SL_PDU_IND. ...ttt e et e 84
sl pdu_ind_t........ ..o 84
SL_PDU_REQ.......ciiiiii i iiiniaann 22
SLPDUREQ........oovviiiian. 83, 101, 103
sl_pdu_req t......coiiiiiiiiiiiiia 83
SL_POWER_ON_REQ....... ..ot 20
SL_POWER_ON_REQ....... ..ottt 70
sl_power_on_req_t.........ccouiiiiiiiiiin... 70

sl_primitive.... 70, 72, 74, 76, 78, 79, 81, 83, 84
85, 87, 89, 91, 93, 95, 97, 98, 99, 101, 103, 105,
106, 108, 110, 111, 112, 114, 115, 117, 118
119, 120, 128, 130

SL_RB_CLEARED_IND........oviiiinnennnnnnnn 27
SL_RB_CLEARED_IND..........ccvvnivunen.. 106, 110
sl rb_cleared_ind_t........................ 110
Sl _TASOI. ottt ittt 79
sl_rem_proc_out_ind_t................ 118
sl_rem_proc_recovered_ind_t............... 119
SL_REMOTE_PROCESSOR_QUTAGE_IND............. 29
SL_REMOTE_PROCESSOR_OUTAGE_IND....... 118, 119
SL_REMOTE_PROCESSOR_RECOVERED_IND......... 29
SL_REMOTE_PROCESSOR_RECOVERED_IND ... 118, 119
SL_RESUME_REQoiiiiniiiiiiiininnnnn, 28
SL_RESUME_REQ...... ...t 115
sl_resume_req_t...............oiiiiiiiiin., 115
SL_RETREIVAL_REQUEST_AND_FSNC_REQR........ 105
sl_retrieval_comp_ind_t 103
SL_RETRIEVAL_COMPLETE_IND 26
SL_RETRIEVAL_COMPLETE_IND.............. 99, 103
sl_retrieval_not_poss_ind_t............... 105
SL_RETRIEVAL_NOT_POSSIBLE_IND.............. 26
SL_RETRIEVAL_NOT_POSSIBLE_IND.... 99, 100, 105
SL_RETRIEVAL_REQ_AND_FSNC_REQ.............. 99
sl_retrieval_req_and_fsnc_t................ 99
SL_RETRIEVAL_REQUEST_AND_FSNC_REQ......... 26
SL_RETRIEVAL_REQUEST_AND_FSNC_REQ... 101, 103,
105
SL_RETRIEVE_BSNT_REQ............. 25, 95, 97, 98
sl_retrieve_bsnt_req_t...................... 95
SL_RETRIEVED_MESSAGE_IND 26
SL_RETRIEVED_MESSAGE_IND.......... 99, 101, 104
sl_retrieved_msg_ind_t..................... 101
SL_RTB_CLEARED_INDoiiiininnnnnnnn.. 27
SL_RTB_CLEARED_IND................ 106, 108, 111
sl_rtb_cleared_ind_t...............cc... 111
SL_START _REQottt 21
SL_START_REQ.......ceveuunneaennnnnn. 76, 78, 80
sl_start_req t............ooiiiiiiiiiia. 76
SL_STATE_ALIGNED_NOT_READY 81
SL_STATE_ALIGNED_READY 78, 81

SL_STATE_IN_SERVICE... 76, 78, 80, 81, 83, 84, 85,
86, 87, 88, 89, 90, 91, 93, 115, 117, 120
SL_STATE_INITIAL_ALIGNMENT.............. 76, 81

Index

SL_STATE_OUT_OF_SERVICE.. 70, 76, 78, 80, 81, 95
96, 97, 99, 100, 101, 103, 106, 108, 110, 111

SL_STATE_POWER_OFF 70, 71, 80, 81
SL_STATE_PROCESSOR_OUTAGE .. 112, 114, 115, 117

118, 119, 120
SL_STATEPOWER_OFF...........cccoeeeeeeeii... 76
178

SL_STOP_REQ -+ttt eieiee e e 22
SL_STOP_REQ. ..., 81, 95
sl_stop_req_t.........cooiiiiiiiiiii 81
sl_timestamp....... 79, 85, 87, 114, 117, 118, 119
STREAMS ... 3,7, 9

Version 1.1 Rel. 7.20141001

	Preface
	Notice
	Abstract
	Purpose
	Intent
	Audience

	Revision History
	Version Control

	ISO 9000 Compliance
	Disclaimer
	U.S. Government Restricted Rights

	Acknowledgements

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, Abbreviations

	The Signalling Link Layer
	Model of the SLI
	SLI Services
	Local Management
	Protocol

	Purpose of the SLI

	SLI Services Definition
	Local Management Services
	Acknowledgement Service
	Information Reporting Service
	Physical Point of Attachment Service
	PPA Attachment Service
	PPA Detachment Service

	Initialization Service
	Interface Enable Service
	Interface Disable Service

	Options Management Service
	Error Reporting Service
	Statistics Reporting Service
	Event Reporting Service

	Protocol Services
	Link Initialization Services
	Power On Service
	Emergency Service
	Start Service
	Stop Service

	Data Transfer Service
	Congestion Services
	Transmit Congestion Service
	Receive Congestion Service

	Restoration Services
	BSNT Retrieval Service
	Buffer Updating Service
	Buffer Clearing Service

	Processor Outage Services
	Local Processor Outage Service
	Remote Processor Outage Service

	Link Option Management Service
	Event Notification Service

	SLI Primitives
	Local Management Service Primitives
	Acknowledgement Service Primitives
	LMI_OK_ACK
	LMI_ERROR_ACK

	Information Reporting Service Primitives
	LMI_INFO_REQ
	LMI_INFO_ACK

	Physical Point of Attachment Service Primitives
	LMI_ATTACH_REQ
	LMI_DETACH_REQ

	Initialization Service Primitives
	LMI_ENABLE_REQ
	LMI_ENABLE_CON
	LMI_DISABLE_REQ
	LMI_DISABLE_CON

	Options Management Service Primitives
	LMI_OPTMGMT_REQ
	LMI_OPTMGMT_ACK

	Event Reporting Service Primitives
	LMI_ERROR_IND
	LMI_STATS_IND
	LMI_EVENT_IND

	Protocol Service Primitives
	Link Initialization Service Primitives
	SL_POWER_ON_REQ
	SL_EMERGENCY_REQ
	SL_EMERGENCY_CEASES_REQ
	SL_START_REQ
	SL_IN_SERVICE_IND
	SL_OUT_OF_SERVICE_IND
	SL_STOP_REQ

	Data Transfer Service Primitives
	SL_PDU_REQ
	SL_PDU_IND

	Congestion Service Primitives
	SL_LINK_CONGESTED_IND
	SL_LINK_CONGESTION_CEASED_IND
	SL_CONGESTION_DISCARD_REQ
	SL_CONGESTION_ACCEPT_REQ
	SL_NO_CONGESTION_REQ

	Restoration Service Primitives
	SL_RETRIEVE_BSNT_REQ
	SL_BSNT_IND
	SL_BSNT_NOT_RETRIEVABLE_IND
	SL_RETRIEVAL_REQUEST_AND_FSNC_REQ
	SL_RETRIEVED_MESSAGE_IND
	SL_RETRIEVAL_COMPLETE_IND
	SL_RETRIEVAL_NOT_POSSIBLE_IND
	SL_CLEAR_BUFFERS_REQ
	SL_CLEAR_RTB_REQ
	SL_RB_CLEARED_IND
	SL_RTB_CLEARED_IND

	Processor Outage Service Primitives
	SL_LOCAL_PROCESSOR_OUTAGE_REQ
	SL_LOCAL_PROCESSOR_OUTAGE_IND
	SL_RESUME_REQ
	SL_LOCAL_PROCESSOR_RECOVERED_IND
	SL_REMOTE_PROCESSOR_OUTAGE_IND
	SL_REMOTE_PROCESSOR_RECOVERED_IND
	SL_CONTINUE_REQ

	Link Option Management Service Primitives
	SL_OPTMGMT_REQ
	SL_OPTMGMT_ACK

	Event Notification Service Primitives
	SL_NOTIFY_REQ
	SL_NOTIFY_IND

	Diagnostics Requirements
	Non-Fatal Error Handling Facility
	Fatal Error Handling Facility

	LMI Header File Listing
	SLI Header File Listing
	Glossary
	Acronyms
	References
	Licenses
	GNU Affero General Public License
	Preamble
	How to Apply These Terms to Your New Programs

	GNU Free Documentation License

	Index

